The simultaneous vaccination of bovines with Lactobacillus casei and the bivalent vaccine against bovine babesiosis induces a better protection against Babesia bovis and B. bigemina transmitted by ticks in extreme field conditions

Main Article Content

Carlos Bautista Garfias
Roberto Castañeda Arriola
Jesús A. Álvarez Martínez
Carmen Rojas Martínez
Julio V. Figueroa Millán
Astrid Rodríguez Lozano

Abstract

The effect of Lactobacillus casei on INIFAP’s mixed vaccine against bovine babesiosis (VAC) was assessed in bovines in an endemic babesiosis area. It was previously reported that L. casei increases the efficiency of the Mexican mixed vaccine against bovine babesiosis under controlled conditions. The results of the present study demonstrated the effectiveness of simultaneous vaccination of bovines with L. casei and the mixed vaccine against bovine babesiosis in eliciting a protective immune response under extreme conditions in the field. Twenty Babesia spp free bovines were allocated into three groups: un-vaccinated (Con­trol, n = 9), vaccinated with VAC (n = 5), and vaccinated simultaneously with VAC and Lactobacillus casei (LC-VAC, n = 6). All animals were kept in a tick and Babesia spp free field at Coatepec, Veracruz during 24 days before moving them to Paso del Toro, Veracruz, for a natural exposition to Babesia spp transmitted by Riphicephalus (Boophilus) microplus ticks. Protection against Babesia spp was observed in bovines belonging to VAC and LC-VAC groups, while control animals showed severe clinical babesiosis. Bovines in VAC-LC group showed less clinical signs between days 12-16 after challenge as compared with animals in VAC group. All bovines showed both Babesia spp after challenge. Levels of IgG anti-Babesia in animals from both vaccinated groups, determined by indirect immunofluorescence test, always were higher to Babesia bovis than to B. bigemina after vaccination and challenge. It was demonstrated the efficiency of simultaneous vaccination of bovines with VAC and L. ca­sei, in eliciting a better protective immune response against naturally transmitted Babesia spp under extreme field conditions.
Keywords:
Bovine babesiosis Bivalent Vaccine Lactobacillus casei Efficacy Field Challenge

Article Details