Effect of prostaglandin F2α administration during the first postpartum hours on the serum calcium concentration of dairy cows

Main Article Content

Eligio Gabriel Salgado-Hernández
Jan Bouda
Adolfo Aparicio-Cecilio-A
Jaroslav Doubek
Francisco Hernany Velásquez-Forero

Abstract

Veterinaria México OA
ISSN: 2448-6760

Cite this as:

  • Salgado-Hernández EG, Bouda J, Aparicio-Cecilio-A A, Doubek J, Velásquez-Forero FH. Effect of prostaglandin F2α administration during the first postpartum hours on the serum calcium concentration of dairy cows. Veterinaria México OA. 2014;1(2). doi: 10.21753/vmoa.1.2.337.
Subclinical hypocalcemia occurs frequently in dairy cows and predisposes them to reproductive pathologies. Prostaglandin F2α (PGF2α) improves uterine health and increases the level of serum calcitriol in other species. The aim of this study was to evaluate the effect of sodium cloprostenol on serum calcium, metabolites of vitamin D and reproductive variables. Eighty multiparous Holstein cows were selected and randomized into two groups. The cows in Group 1 (n = 38) were treated with 500 µg of I M sodium cloprostenol, a synthetic analog of PGF2α, at 1 and 48 h postpartum. Group 2 was the control group (n = 42). Blood samples were taken from 10 animals per group at 1, 3, 12, 24, 48 h and 7 d postcalving. The incidence of retained placenta, metritis and endometritis and the number of open days were recorded. The concentrations of Ca, P, Mg, calcidiol and calcitriol in the serum were evaluated using an analysis of variance for repeated measures design. The serum Ca concentration was increased up to normalized at day 7 in the PGF2α group compared with the level in the control group. PGF2α treatment increased the serum calcium concentration and reduced the number of open days, and thus, could be useful in preventing subclinical hypocalcemia and postpartum reproductive problems.

Figure 4. Cumulative percentage of conception in dairy cows treated with 500 µg of sodium cloprostenol at 1 and 48 h postpartum (n = 38) and in controls (n = 42). The curves are significantly different (P = 0.02), as determined using the Log Rank test.
Keywords:
Prostaglandin F2α Subclinical hypocalcemia Calcitriol Postpartum dairy cow.

Article Details

References

1) Carrillo-López N, Fernández-Martin JL, Cannata-Andía JB. 2009. Papel del calcio, calcitriol y sus receptores en la regulación de la paratiroides. Nefrología. 29 (2): 103-108.

2) Chassagne M, Barnouin J. 1993. The effect of inhibition of prostaglandin F2 alpha synthesis on placental expulsion in the ewe. Canadian Journal of Veterinary Research. 57 (2): 95-98.

3) Curtis CR, Erb HN, Sniffen CJ, Smith RD, Powers PA, Smith MC, White ME, Hillman RB, Pearson EJ. 1983. Association of parturient hypocalcemia with eight periparturient disorders in Holstein cows. Journal of American Veterinary Medical Association. 183 (5): 559-561.

4) Favus MJ, Karnauskas AJ, Parks JH, Coe LF. 2004. Peripheral blood monocyte vitamin D receptor levels are elevated in patients with idiopathic hypercalciuria. Journal of Clinical Endocrinology and Metabolism. 89 (10): 4937-4943.

5) Fukumoto S, Yamashita T. 2002. Fibroblast growth factor-23 is the phosphaturic factor in tumor-induced osteomalacia and may be phosphatonin. Current Opinion in Nephrology and Hypertension. 11 (4): 385-389.

6) Goff JP, Reinhardt TA, Horst RL. 1989. Recurring hypocalcemia of bovine parturient paresis is associated with failure to produce 1.25 dihydroxyvitamin D. Endocrinology, 125 (1): 49-53.

7) Goff JP, Reinhardt TA, Horst RL. 1991. Enzymes and factors and action in normal controlling vitamin D metabolism and milk fever cows. Journal of Dairy Science. 74 (12): 4022-4032.

8) Kimura K, Reinhardt TA, Goff JP. 2006. Parturition and hypocalcemia blunts calcium signals in immune cells of dairy cattle. Journal of Dairy Science. 89 (7): 2588-2595.

9) Kojouri GHA. 2003. Parturient paresis and its relationship with hypophosphatemia (abstract). Acta Veterinaria Scandinavica, Supplementum. 98: 303.

10) Krajisnik T, Bjorklund P, Marsell R, Ljunggren O, Akerstrom G, Jonsson JB, Westin G, Larsson TE. 2007. Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha–hydroxylase expression in cultured bovine parathyroid cells. Journal of Endocrinology. 195 (1): 125-131.

11) Lander-Chacin MF, Hansen PJ, Drost M. 1990. Effects of stage of the estrous cycle and steroid treatment on uterine immunoglobulin content and polymorphonuclear leukocytes in cattle. Theriogenology. 34(6): 1169-1184.

12) Leidl W, Hegner D, Rockel P. 1980. Investigation on the PGF2α concentration in the maternal and fetal cotyledons of cows with and without retained fetal membranes. Zentralblatt für Veterinärmedizin Reihe A. 27 (9-10): 691-696.

13) Leonhardt A, Timmermanns G, Roth B, Seyberth HW. 1992. Calcium homeostasis and hypercalciuria in hyperprostaglandin E syndrome. Journal of Pediatrics. 120 (4): 546-554.

14) Lewis GS, Wulster-Radcliffe MC. 2006. Prostaglandin F2α upregulates uterine immune defenses in the presence of the immunosuppressive steroid progesterone. American Journal of Reproductive Immunology. 56 (2): 102-111.

15) Martinez, N, Risco CA, Lima FS, Bisinotto RS, Greco LF, Ribeiro ES, Maunsell F, Galvao K, Santos JEP. 2012. Evaluation of peripartal calcium status, energetic profile and neutrophil function in dairy cows at low or high risk of developing uterine disease. Journal of Dairy Science. 95 (12): 7158-7172.

16) Melendez P, McHale J, Bartolome, J, Archbald, LF, Donovan GA. 2004. Uterine involution and fertility of holstein cows subsequent to early postpartum PGF2α treatment for acute puerperal metritis. Journal of Dairy Science. 87:3238-3246.

17) Ortega OA, Lopez OR, Mapes G, Ortiz GO, Hernández-Cerón J. 2012. Patologías uterinas y fertilidad de vacas lecheras tratadas con dos inyecciones de PGF2α en las primeras 48 horas posparto. Veterinaria México. 43 (3): 235-240.

18) Reinhardt TA, Lippolis JD, McCluskey BJ, Goff JP, Horst RL. 2011. Prevalence of subclinical hypocalcemia in dairy herds. The Veterinary Journal. 188 (1): 122-124.

19) Salgado-Hernández EG, Bouda J, Villa-Godoy A, Romano, MJL, Gutierréz AJ, Velásquez-Forero FH. 2014a. Metabolites of vitamin D and minerales in blood and colostrum of primiparous and multiparous dairy cows postpartum. Czech Journal of Animal Science. 59 (1): 11-18.

20) Salgado-Hernández EG. Velásquez-Forero FH. Aparicio-Cecilio A. Castillo-Mata DA. Bouda J. 2014b. Effect of the first and second postpartum partial milking on blood serum calcium concentration in dairy cows. Czech Journal of Animal Science. 59(3): 128-133.

21) Shimada T, Kakitani M, Yamasaki Y, Hasegawa H, Takeuchi Y, Fujita T, Fukumoto S, Tomisuka K, Yamashita T. 2004. Targeted ablation of FgF-23 demonstrates an essential physiological role of FGF-23 in phosphate and vitamin D metabolism. Journal of Clinical Investigation. 113 (4): 561-568.

22) Treschel U, Taylor C, Bonjour J, Fleisch H. 1980. Influence of prostaglandins and of cyclic nucleotides in the metabolism of 25-hydroxyvitamin D3 in primary chick kidney cell culture. Biochemical and Biophysics Research Communications. 93 (4): 1210-1216.

23) Velásquez-Forero F, García P, Triffitt JT, Llach F. 2006. Prostaglandin E1 increases in vivo and in vitro calcitriol biosynthesis in rabbits. Prostaglandins Leukotrienes and Essential Fatty Acids. 75 (2): 107-15.

24) Welch T. 1997. The hyperprostaglandin E syndrome: a hypercalciuric variant of Bartter’s syndrome. Journal of Bone and Mineral Research. 12 (10): 1753-1754.

25) Wischral A, Verreschi ITN, Lima SB, Hayashi LF, Barnabe RC. 2001. Pre-parturition profile of steroids and prostaglandin in cows with or without foetal membrane retention. Animal Reproduction Science. 67 (3-4): 181-188.

26) Yamada M, Matsumoto T, Takahashi N, Suda T, Ogata E. 1983. Stimulatory effect of PGE2 on 1a-25 dihydroxyvitamin D3 synthesis in rats. Biochemical Journal. 216: 237-240.