Genomic analysis of an atypical Mexican low-pathogenic H5N2 avian influenza virus

Main Article Content

Giovanni Steffani-Hernández
Fernando Chávez-Maya
Edith Rojas-Anaya
Elizabeth Loza-Rubio
Gary García-Espinosa

Abstract

Veterinaria México OA
ISSN: 2448-6760

Cite this as:

  • Steffani Hernández G, Chávez Maya F, Rojas Anaya E, Loza Rubio E, García Espinosa G. Genomic analysis of an atypical Mexican low-pathogenic H5N2 avian influenza virus. Veterinaria México OA. 2016;3(2). doi: 10.21753/vmoa.3.2.363

We analysed the genome of a low-pathogenic avian H5N2 influenza virus isolated from the faeces of experimentally infected Pekin ducks and Leghorn-type chickens to determine its origin and molecular characteristics. The complete genomic sequence was determined using a Sanger-based genome sequencing method and was subsequently characterized by phylogenetic analysis and genetic comparison. The results of this study showed that 8 genomic segments corresponded to an avian influenza virus that were related with strains isolated in Mexico. Investigation of the haemagglutinin gene revealed the presence of few basic amino acids at the cleavage site and lack of a potential N-glycosylation site at position 11. The gene encoding the PB1 protein lacked PB1-F2 and the basic polymerase gene codes for PA-X. In addition, the basic polymerase gene contained the consensus ribosomal frameshifting motif TCC TTT CGT C, which is required for the expression of the PA-X. Molecular characteristics showed that the virus has features of a low-pathogenic H5 influenza virus with the exception of a potential N-glycosylation site at position 11. The genome information for this particular virus will provide a molecular map for further in vivo studies to identify why some influenza viruses can persist in chickens for long periods of time. Such information will be useful in countries such as Mexico, where the virus has been a poultry health problem since 1994 and has the potential to evolve high pathogenicity.

Figure 1. Phylogenetic tree of the HA gene of A/chicken/Mexico/2007 (H5N2) Influenza A virus []. The phylogenetic tree was constructed using the neighbour-joining method. The percentages of replicate trees in which the associated taxa clustered together in a bootstrap test (1,000 replicates) are shown next to the branches. The evolutionary distances were computed using the Kimura 2-parameter method. The analysis involved 101 chicken nucleotide sequences. Evolutionary analyses were conducted in MEGA 5.05. A larger triangle size represents a larger number of nucleotide sequences with genetic relationship.
Keywords:
Avian influenza H5N2 low-pathogenicity chicken embryos genome

Article Details

References

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. Journal of Molecular Biology, 215:403-410.

Armas Bojórquez E, Rojas Anaya E, Diosdado Vargas F, García Espinosa G, Loza-Rubio E. 2015. Evaluation of polyvalent vaccine obtained from divergent low pathogenic H5N2 isolates of the avian influenza virus in Mexico. SM Vaccines and Vaccination Journal, 1:1010.

Berhane Y, Joseph T, Kehler H, Hisanaga T, Embury-Hyatt C, Diederich S, Hooper McGreevy K, Handel K, Cottam-Birt C, Pasick J. 2014. Characterization of a low pathogenic avian influenza H5N2 virus isolated from a turkey breeder flock in Manitoba, Canada. Avian Diseases, 58(1):1-7. DOI: 10.1637/10591-061213-Reg.1. http://dx.doi.org/10.1637/10591-061213-Reg.1

Carranza-Flores JM, Padilla-Noriega L, Loza-Rubio E, García-Espinosa G. 2013. Prolonged excretion of a low-pathogenicity H5N2 avian influenza virus strain in the Pekin duck. Journal of Veterinary Science, 14:487-490. DOI: 10.4142/jvs.2013.14.4.487. http://dx.doi.org/10.4142/jvs.2013.14.4.487

Causey D, Edwards SV. 2008. Ecology of avian influenza virus in birds. Journal of Infectious Diseases, 197:S29-33.

Chang-Chun DL, Huachen Z, Pei-Yu H et al. 2014. Emergence and evolution of avian H5N2 influenza viruses in chickens in Taiwan. Journal of Virology, 88(10):5677-5686. DOI: 10.1128/JVI.00139-14. http://dx.doi.org/10.1128/JVI.00139-14

Deshpande KL, Fried VA, Ando M, Webster RG. 1987. Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence. Proceedings of the National Academy of Science of the United States of America, 84:36-40.

Escorcia M, Carrillo-Sánchez K, March-Mifsut S, Chapa J, Lucio E, Nava GM. 2010. Impact of antigenic and genetic drift on the serologic surveillance of H5N2 avian influenza viruses. BioMed Central Veterinary Research, 6:57. DOI: 10.1186/1746-6148-6-57. http://dx.doi.org/10.1186/1746-6148-6-57

Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. 2003. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research, 31:3784-3788. DOI: 10.1093/nar/gkg563

Ha Y, Stevens DJ, Skehel JJ, Wiley DC. 2001. X-ray structures of H5 avian and H9 swine influenza virus hemaglutinins bound to avian and human receptor analogs. Proceedings of the National Academy of Science of the United States of America, 98(20):11181-11186. DOI: 10.1073/pnas.201401198. http://dx.doi.org/10.1073/pnas.201401198

Hayashi T, MacDonald LA, Takimoto T. 2015. Influenza A virus protein PA-X contributes to viral growth and suppression of the host antiviral ad immune responses. Journal of Virology, 89(12):6442-6452. http://dx.doi:10.1128/JVI.00319-15

Hu J, Mo Y, Wang X, Gu M, Hu Z, Zhong L, Wu Q, Hao X, Hu S, Liu W, Liu H, Liu X, Liu X. 2015. PA-X decreases the pathogenicity of highly pathogenic H5N1 influenza A virus in avian species by inhibiting virus replication and host response. Journal of Virology, 89(8):4126-4142. http://dx.doi:10.1128/JVI.02132-14

Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR. 2001. Universal primer set for the full-length amplification of all influenza A viruses. Archives of Virology, 146:2275-2289. DOI: 10.1007/s007050170002. http://dx.doi.org/10.1007/s007050170002

Jagger BW, Wise HM, Kash JC, Walters KA, Wills NM, Xiao YL, Dunfee RL, Schwartzman LM, Ozinsky A, Bell GL, Dalton RM, Lo A, Efstathiou S, Atkins JF, Firth AE, Taubenberger JK, Digard P. 2012. An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science, 337:199-204. DOI: 10.1126/science.1222213. http://dx.doi.org/10.1126/science.1222213

Lee CW, Senne DA, Suarez DL. 2004. Effect of vaccine use in the evolution of Mexican lineage H5N2 avian influenza virus. Journal of Virology, 78(15):8372-8381. DOI: 10.1128/JVI.78.15.8372-8381.2004. http://dx.doi.org/10.1128/JVI.78.15.8372-8381.2004

Li J, Dohna H, Cardona CJ, Miller J, Carpenter TE. 2011. Emergence and genetic variation of neuraminidase stalk deletions in avian influenza viruses. PLoS One, 6:e14722. DOI: 10.1371/journal.pone.0014722. http://dx.doi.org/10.1371/journal.pone.0014722

Li Q, Wang X, Sun Z, Hu J, Gao Z, Hao X, Li J, Liu H, Wang X, Gu M, Xu X, Liu, X. 2015. Adaptive mutations in PB2 gene contribute to the high virulence of a natural reassortant H5N2 avian influenza in mice. Virus Research, 210:255-263. http://dx.doi.org/10.1016/j.virusres.2015.08.017

MacAuley JL, Chipuk JE, Boyd KL, Van De Velde N, Green DR, McCullers JA. 2010. PB1-F2 proteins from H5N1 and 20th century pandemic influenza viruses cause immunopathyology. Plos Pathogen, 6:e1001014. http://dx.doi.org/10.1371/journal.ppat.1001014

Marjuki H, Scholtissek C, Franks J, Negovetich NJ, Aldridge JR et al. 2010. Three amino acid changes in PB1-F2 of highly pathogenic H5N1 avian influenza virus affect pathogenicity in mallard ducks. Archives of Virology, 155:925-934.

Neumann G, Kawaoka Y. 2011. Influenza Viruses: Molecular Virology. Encyclopedia of Life Sciences. DOI: 10.1002/9780470015902.a0001031.pub3. http://dx.doi.org/10.1002/9780470015902.a0001031.pub3

Okamatsu M, Saito T, Yamamoto Y, Mase M, Tsuduku S, Nakamura K, Tsukmoto K, Yamaguchi S. 2007. Low parhogenicity H5N2 avian influenza outbreak in Japan during the 2005-2006. Veterinary Microbiology, 124:35-46.

Petrini A, Vallat B. 2009. Notification of avian influenza and newcastle disease to the Organization for Animal Health (OIE). In: Capua I, Alexander DJ. (eds). Avian Influenza and Newcastle Disease. Milan, Italy: Springer-Verlag.

Sanger F, Nicklen S, Coulson AR. 1977. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Science of the United States of America, 74(12):5463-5467.

Soda K, Cheng MC, Yoshida H, Endo M, Lee SH, Okamatsu M, Sakoda Y, Wang CH, Kida H. 2011. A low pathogenic H5N2 influenza virus isolated in Taiwan acquired high pathogenicity by consecutive passages in chickens. Journal of Veterinary Medical Science, 73(6):767-772.

Swayne DE, Perdue ML, Garcia M, Rivera-Cruz E, Brugh M. 1997. Pathogenicity and diagnosis of H5N2 Mexican avian influenza viruses in chickens. Avian Diseases, 41(2):335-346.

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Method. http://www.megasoftware.net/ [access: 07 apr 2014].

Villarreal-Chavez C, Rivera-Cruz E. 2003. An update on avian influenza in Mexico. Avian Diseases, 47(3):1002-1005.

Wood GW, Banks J, Strong I, Parsons G, Alexander DJ. 1996. An avian influenza virus of H10 subtype that is highly pathogenic for chickens, but lacks multiple basic amino acids at the haemagglutinin cleavage site. Avian Pathology, 25:799-806. DOI: 10.1080/03079459608419182. http://dx.doi.org/10.1080/03079459608419182

Zhao G, Gu X, Lu X, Pan J, Duan Z, Zhao K, Gu M, Liu Q, He L, Chen J, Ge S, Wang Y, Chen S, Wang X, Peng D, Wan H, Liu X. 2012. Novel Reassortant highly pathogenic H5N2 avian influenza viruses in poultry in China. PLoS One, 7(9):e46183. DOI: 10.1371/journal.pone.0046183. http://dx.doi.org/10.1371/journal.pone.0046183