Evaluation of the aroA mutant of Corynebacterium pseudotuberculosis in cellular and murine models

Cristina Ibarra-Zazueta, Beatriz Arellano-Reynoso, Rigoberto Hernández-Castro, Erika Gabriela Palomares-Resendiz, Efren Diaz-Aparicio

Resumen


Veterinaria México OA
ISSN: 2448-6760

Cite this as:

  • Ibarra Zazueta C, Arellano Reynoso B, Hernández Castro R, Palomares Resendiz EG, Diaz Aparicio E. Evaluation of the aroA mutant of Corynebacterium pseudotuberculosis in cellular and murine models. Veterinaria México OA. 2016;3(4). doi: 10.21753/vmoa.3.4.366
Caseous lymphadenitis of small ruminants causes economic losses worldwide. To date, no effective vaccine has been developed against the causative agent of this disease, Corynebacterium pseudotuberculosis. The objective of the present work was to evaluate an aroA mutant gene strain of C. pseudotuberculosis in cellular and murine models, for attenuation and the ability to stimulate an immune response. The intracellular survival of the aroA mutant strain and the wild type strain (WT) of C. pseudotuberculosis was evaluated in J774A.1 murine macrophages using a multiplicity of infection (MOI) of 1:1 with the following infection times: 30 min, and 1, 2, 4, 8, 12, and 24 h. The largest difference in the intracellular survival of the mutant was observed 30 min post-infection. After subcutaneous skin vaccination, the subcutaneous lesion progression observed on the 14th day was more severe in those animals that were vaccinated with the WT strain. An analysis of the residual virulence in the murine model did not reveal any bacteria in mice vaccinated with the aroA strain on day 28 post-vaccination. Mice vaccinated with the mutant showed 50 % protection against the intraperitoneal challenge, exceeding that of the control group (41.67 %). We conclude that the virulence of the aroA mutant was significantly attenuated in both cellular and murine models according to the residual virulence detected in mice. However, vaccination with the mutant failed to confer at least 80 % protection, which is desirable for an immunogen. Hence, this study contributes to the knowledge of the immune response against Corynebacterium pseudotuberculosis.

Palabras clave


Corynebacterium pseudotuberculosis; aroA gene; vaccination; cellular model; murine model.

Texto completo:

PDF (English) HTML (English)

Referencias


Songer JG, Beckenbach K, Marshall MM, Olson GB, Kelley L. Biochemical and genetic characterization of Corynebacterium pseudotuberculosis. Am J Vet Res. 1988;49(2):223-6. PMID:2831763.

Moraes P, Seyffert N, Silva W, Castro T, Silva R, Lima D, et al. Characterization of the Opp peptide transporter of Corynebacterium pseudotuberculosis and its role in virulence and pathogenicity. Biomed Res Int. 2014;2014:489782. doi: 10.1155/2014/489782.

Aleman M, Spier SJ, Wilson WD, Doherr M. Corynebacterium pseudotuberculosis infection in horses: 538 cases (1982-1993). J Am Vet Med Assoc. 1996;209(4):804-9. PMID:8756884.

Lopes Bastos B, Dias Portela RW, Alves Dorella F, Ribeiro D, Seyffert N, de Paula Castro TL, et al. Corynebacterium pseudotuberculosis: Immunological Responses in Animal Models and Zoonotic Potential. J Clin Cell Immunol. 2012; S4. Available from: http://dx.doi.org/10.4172/2155-9899.S4-005. doi: 10.4172/2155-9899.S4-005.

Moura-Costa L, Bahia R, Carminati R, Vale VL, Paule B, Portela R, et al. Evaluation of the humoral and cellular immune response to different antigens of Corynebacterium pseudotuberculosis in Caninde goats and their potential protection against caseous lymphadenitis. Vet Immunol Immunopathol. 2008;126(1-2):131-41. doi: 10.1016/j.vetimm.2008.06.013.

Sebkova A, Karasova D, Crhanova M, Budinska E, Rychlik I. aro mutations in Salmonella enterica cause defects in cell wall and outer membrane integrity. J Bacteriol. 2008;190(9):3155-60. doi:10.1128/JB.00053-08.

Parish T, Stoker N. The common aromatic amino acid biosynthesis pathway is essential in Mycobacterium tuberculosis. Microbiology. 2002;148(Pt 10):3069-77. doi: 10.1099/00221287-148-10-3069.

Trebichavsky I, Splichalova A, Rychlik I, Hojna H, Muneta Y, Mori Y, et al. Attenuated aroA Salmonella enterica serovar Typhimurium does not induce inflammatory response and early protection of gnotobiotic pigs against parental virulent LT2 strain. Vaccine. 2006;24(20):4285-9. doi: 10.1016/j.vaccine.2006.02.054.

Silva J, Droppa-Almeida D, Borsuk S, Azevedo V, Portela R, Miyoshi A, et al. Corynebacterium pseudotuberculosis cp09 mutant and cp40 recombinant protein partially protect mice against caseous lymphadenitis. BMC Vet Res. 2014;10:965. doi: 10.1186/s12917-014-0304-6.

Alam J, Singh B, Hansda D, Singh V, Verma J. Evaluation of aroA deletion mutant of Salmonella enterica subspecies enterica serovar Abortusequi for its vaccine candidate potential. Indian J Exp Biol. 2009;47(11):871-9.

Simmons C, Dunstan S, Tachedjian M, Krywult J, Hodgson A, Strugnell R. Vaccine potential of attenuated mutants of Corynebacterium pseudotuberculosis in sheep. Infect Immun. 1998;66(2):474-9. PMCID: PMC107930.

Vingataramin L, Frost E. A single protocol for extraction of gDNA from bacteria and yeast. Biotechniques. 2015;58(3):120-5. doi: 10.2144/000114263.

Sambrook J, Fritsch E, Maniatis T. Molecular cloning. Laboratory manual. 2nd ed. New York, EUA: Cold Spring Harbor Laboratory Press; 1989. 1626 pp.

Dorella F, Estevam E, Cardoso P, Savassi B, Oliveira S, Azevedo V, et al. An improved protocol for electrotransformation of Corynebacterium pseudotuberculosis. Vet Microbiol. 2006;114(3-4):298-303. doi: 10.1016/j.vetmic.2005.12.010.

Stefanska I, Gierynska M, Rzewuska M, Binek M. Survival of Corynebacterium pseudotuberculosis within macrophages and induction of phagocytes death. Pol J Vet Sci. 2010;13(1):143-9.

Stanford K, Brogden K, McClelland L, Kozub G, Audibert F. The incidence of caseous lymphadenitis in Alberta sheep and assessment of impact by vaccination with commercial and experimental vaccines. Can J Vet Res. 1998;62(1):38-43. PMCID: PMC1189440.

Treviño-Villarreal J, Vera-Cabrera L, Valero-Guillen P, Salinas-Carmona M. Nocardia brasiliensis cell wall lipids modulate macrophage and dendritic responses that favor development of experimental actinomycetoma in BALB/c mice. Infect Immun. 2012;80(10):3587-601. doi: 10.1128/IAI.00446-12.

Figueiredo Castro Nassar A, Miyashiro S, Gregori F, Piatti RM, Daniel GT, Gregory L. Standardization of an enzyme-linked immunosorbent assay (ELISA) for detection of antibodies anti-Corynebacterium pseudotuberculosis in sheep. Small Rumin Res. 2014;116(2-3):229–32. doi: 10.1016/j.smallrumres.2013.10.016.

Ribeiro D, Rocha Fde S, Leite K, Soares Sde C, Silva A, Portela R, et al. An iron-acquisition-deficient mutant of Corynebacterium pseudotuberculosis efficiently protects mice against challenge. Vet Res. 2014;45:28. doi: 10.1186/1297-9716-45-28.

Kaps M, Lamberson W. Bioestatistcs for animal science. An introductory text. 2nd ed: CABI International 2009. 520 p.

Hodgson A, Carter K, Tachedjian M, Krywult J, Corner L, McColl M, et al. Efficacy of an ovine caseous lymphadenitis vaccine formulated using a genetically inactive form of the Corynebacterium pseudotuberculosis phospholipase D. Vaccine. 1999;17(7-8):802-8. doi: 10.1016/S0264-410X(98)00264-3.

Rodrigues Pinho JM, Alves Dorella F, da Silva Coelho K, Toscano Fonseca C, Caldas Cardoso F, Meyer R, et al. Immunization with recombinant Corynebacterium pseudotuberculosis heat–shock protein (Hsp)-60 is able to induce an immune response in mice, but fails to confer protection against infection. Open Vet Sci J. 2009;3:22-7. doi: 10.2174/1874318800903010022.

Baird G, Fontaine M. Corynebacterium pseudotuberculosis and its role in ovine caseous lymphadenitis. J Comp Pathol. 2007;137(4):179-210. doi: 10.1016/j.jcpa.2007.07.002.

D’Afonseca V, Moraes P, Dorella F, Pacheco L, Meyer R, Portela R, et al. A description of genes of Corynebacterium pseudotuberculosis useful in diagnostics and vaccine applications. Gen Mol Res. 2008;7(1):252-60. PMID: 18551390.

McKean S, Davies J, Moore R. Expression of phospholipase D, the major virulence factor of Corynebacterium pseudotuberculosis, is regulated by multiple environmental factors and plays a role in macrophage death. Microbiology. 2007;153(Pt 7):2203-11. doi 10.1099/mic.0.2007/005926-0.

Dong C. Diversification of T-helper-cell lineages: finding the family root of IL-17-producing cells. Nat Rev Immunol. 2006;6(4):329-33. doi: 10.1038/nri1807.




DOI: http://dx.doi.org/10.21753/vmoa.3.4.366

Enlaces refback

  • No hay ningún enlace refback.