Monitoring lidia cattle with GPS-GPRS technology; a study on grazing behaviour and spatial distribution

Juan Manuel Lomillos Pérez, Marta Elena Alonso de la Varga, Juan José García, Vicente Ramiro Gaudioso Lacasa


Veterinaria México OA
ISSN: 2448-6760

Cite this as:

  • Lomillos Pérez JM, Alonso de la Varga ME, García JJ, Gaudioso Lacasa VR. Monitoring lidia cattle with GPS-GPRS technology; a study on grazing behaviour and spatial distribution. Veterinaria México OA. 2017;4(4). doi:10.21753/vmoa.4.4.405.

The behavior of grazing cattle has not been studied as much as farmed animals. In certain breeds, reared in extensive systems, human presence can cause an interruption or modification in their ethological patterns moving away from the person watching them. The use of technologies like a Global Position System and a General Packet Radio Service (GPS-GPRS) allows monitoring bovine animals exploited in extensive systems, providing information in real time about distances traveled, home range grazing areas, frequented territories, behavior patterns, etc. In the present work, GPS-GPRS collars were used to monitor 21 cows of to the lidia cattle breed, with different ages, and from three different herds in the Salamanca province (Spain). The study lasted 8 months, the animals being distributed in enclosures of different dimensions and orographic characteristics, geographic position data being collected every 15 minutes. The proper functioning of the GPS-GPRS devices was proven and home range grazing area for each animal has been calculated, with an average of 56 hectares. A graph of animals’ circadian rhythm with the distances traveled for hours has been developed. A trend was observed to start daily activity hours before dawn, diminishing its activity with the evening and overnight, with a night’s rest phase of about 7 hours. We also report daily distance traveled (3.15 km on average), finding differences depending on age, available space allowance/animal, daylight and the
season. Our results could be of relevance for a better pasture management using enclosures of size that increase the use of all the surface available.

Figure 3. Image of fencing No. 5 positions of the 3 animals monitored. Red, Yellow, Blue.


GPS, GPRS, spatial distribution, behavior, grazing, extensive systems, telemetry, remote sensing, home range.

Full Text:



Arnold G W. 1981. Grazing behavior. In: Morley F H W (ed), Grazing animals. Elsevier Publishers, New York,USA. pp. 79–104.

Gillen, R.L., W.C. Krueger, and R.F. Miller. 1984. Cattle distribution on moun¬tain rangeland in Northeastern Oregon. J. Range Manage. 37:549–553. doi:10.2307/3898856

Irving, B.D., P.L. Rutledge, A.W. Bailey, M.A. Naeth, and D.S. Chanasyk. 1995. Grass utilization and grazing distribution within intensively managed fields in central Alberta. J. Range Manage. 48:358–361. Doi:10.2307/4002489.

Bowman JL, Kochanny CO, Demarais S, Leopold BD. Evaluation of a GPS collar for white-tailed deer. Wildl Soc Bull. 2000;28:141.

Edenius L. Field test of a GPS location system for Moose Alces alces under Scandinavian boreal conditions. Wildl Biol. 1997;3:39-43.

Janeau G, Adrados CH, Joachim J, Gendner JP, Pépin D. Performance of dif¬ferential GPS collars in temperate mountain forest. C R Biol. 2004:327. Doi: 10.1016/j.crvi.2004.07.014

Janeau G, Angibault JM, Cargnelutti B, Joachim J, Pépin D, Spitz F. Le Global Po¬sitioning System (GPS) et son utilisation (en mode différentiel) chez les grands mammifères: principes, précision, limites, contraintes et perspectives. Arvicola Actes Amiens. 1998;97:19-24.

Moen R, Pastor J, Cohen Y, Schwartz CC. Effects of moose movement and hab¬itat use on GPS collar performance. J Wildl Manag. 1996;60:659-68.

Rempel RS, Rodgers AR. Effects of differential correction on accuracy of a GPS animal location system. J Wildl Manage. 1997;61(2):525-30.

Rodgers A, Anson P. Animal-borne GPS: Tracking the habitat. GPS Worl. 1994;5:20-32.

Akesson S. Tracking fish movement in the ocean. TREE. 2002;17(2):56-7.

Bloch BA, Dewar H, Farwell CH, Prince ED. A new satellite technology for track¬ing the movements of Atlantic bluefin tuna. Ecology. 1998;95:9384-9.

Magnusson J. An assessment of atlantic bluefin tuna: National Academy Press. Washington, DC (US); 1994.

Metcalfe, J.D. and Arnold, G.P. (1997) Tracking fish with electronic tags. Nature 387, 665-666.

Steiner I, Burgi C, Werffeli S, Dellomo G, Valenti P, Troster G, et al. A GPS logger and software for analysis of homing in pigeons and small mammals. Physiol Behav. 2000;71(5):589-96. doi: 10.1016/S0031-9384(00)00409-1.

Hebenbrock M, Due M, Holzhausen H, Sass A, Stadler P, Ellendorff F. A new tool to monitor training and performance of sport horses using Global Positioning System (GPS) with integrated GSM capabilities. . Dtsch Tierarztl Wochenschr. 2005;112(7):262-5.

Cibils A, Peinetti R, Clifton G, Rial P, González L. Desarrollo de un método para estudiar el comportamiento ovino en condiciones de pastoreo extensivo me¬diante el uso de posicionadores satelitales. In: Gonzalez L, Iglesias RO, Cibils OA, editors. Campo experimental Potrok Aike Resultado de 15 años de labor técnica. Provincia de Santa Cruz (AR): Estación Experimental Agropecuaria San¬ta Cruz Convenio INTA; 2005. p. 93-5.

Hulbert IAR, Wyllie J, Waterhouse A, French J, Mcnulty D. A note on the circadian rhythm and feeding behaviour of sheep fitted with a lightweight GPS collar. Appl Anim Behav Sci. 1998;60:359-64.

Rutter SM, Beresford SA, Roberts G. Use of GPS to identify the grazing areas of hill sheep. Comput Electron Agric. 1997;17:177-88.

Aparicio MA. Aplicación de las nuevas tecnologías a la montanera del cerdo ibérico. Conferencia de ingreso en la Real Academia de Ciencias Veterinarias; Madrid (ES)2005. p. 70.

Bailey DW, Keil MR, Rittenhouse LR. Research observation: Daily movement pat¬terns of hill climbing and bottom dwelling cows. J Range Manage. 2004;57:20– 8. doi: 10.2307/4003950.

Bailey DW, Van Wagoner HC, Weinmeister R. Individual animal selection has the potential to improve uniformity of grazing on foothill rangeland. Rangeland Ecol Manag. 2006;59:351–8. doi: 10.2111/04-165R2.1.

Barbari M, Conti L, Koostra BK, Masi G, Sorbetti F, Workman SR. The use of global positioning and geographical information systems in the management of extensive cattle grazing. Biosystems Engineering. 2006;95(2):271–80. doi: 10.1016/j.biosystemseng.2006.06.012.

Brosh A, Henkin Z, Ungar ED, Dolev A, Orlov A, Yehuda Y, et al. Energy cost of cows grazing activity: Use of the heart rate method and the Global Positioning System for direct field estimation. J Anim Sci. 2006;84:1951-67. doi: 10.2527/ jas.2005-315.

Brosh A, Henkin Z, Ungar ED, Dolev A, Shabtay A, Orlov A, et al. Energy cost of activities and locomotion of grazing cows: A repeated study in larger plots. J Anim Sci. 2010;88:315–23. doi: 10.2527/jas.2009-2108.

Fehmi JS, Laca EA. A note on using a laser-based technique for record¬ing of behaviour and location of free-ranging animals. Appl Anim Behav Sci. 2001;71:335-9.

Ganskopp D. Manipulating cattle distribution with salt and water in large arid-land pastures: a GPS/GIS assessment. Appl Anim Behav Sci. 2001;73:251-62.

Ganskopp D, Cruz R, Johnson DE. Least-effort pathways? A GIS analysis of live¬stock trails in rugged terrain. Appl Anim Behav Sci. 2000;68:179-90.

Henkin Z, Ungar ED, Dolev A. Foraging behaviour of beef cattle in the hilly terrain of a Mediterranean grassland. Rangeland J. 2012;34:163–72. doi: 10.2527/ jas2013-6996.

Hunt LP, Petty S, Cowley R, Fisher A, Ash AJ, MacDonald N. Factors affecting the management of cattle grazing distribution in northern Australia: preliminary observations on the effect of paddock size and water points1. The Rangeland Journal 2007;29:169-179. doi:10.1071/RJ07029

Putfarken D, Dengler J, Lehmann S, Härdtle W. Site use of grazing cattle and sheep in a large-scale pasture landscape: A GPS/GIS assessment. App Anim Behav Sci. 2008;111:54–67. doi: 10.1016/j.applanim.2007.05.012.

Schlecht E, Hülsebuch CH, Mahler F, Becker K. The use of differentially corrected global positioning system to monitor activities of cattle at pastures. Applied Animal Behaviour Science. 2004;85:185-202. doi: 10.1016/j.applanim.2003.11.003.

Sickel H, Ihse M, Norderhaug A, Sickel M. How to monitor semi-natural key habitats in relation to grazing preferences of cattle in mountain summer farming areas. An aerial photo and GPS method study. Landsc Urban Plan. 2004;67:67- 77. doi: 10.1016/S0169-2046(03)00029-X.

Turner LW, Udal MC, Larson BT, Shearer SA. Monitoring cattle behaviour and pasture use with GPS and GIS. Can J Anim Sci. 2000;80::405-13.

Ungar ED, Henkin Z, Gutman M, Dolev A, Genizi A, Ganskopp D. Interference of animal activity from GPS collar data on free-ranging cattle. Rangeland Ecol Manag. 2005;58:256-66.

Nyamurekung’e S, Cibils A, Estell R, Gonzalez A, Roacho-Estrada O, FA R-A. Movement and spatial proximity patterns of rangeland-raised Raramuri Criollo cow-calf pairs. J Anim Sci. 2016;94:5-39. doi: 10.2527/jam2016-0089.

Ghribi B, and Logrippo L. Understanding GPRS: The GSM Packet Radio Service. Computer Networks 2000;34:763-779.

Gaudioso VR, Sánchez JM, Boissou MF. Influence de la rédution d’espace sur le comportement agonistique des taureaux. Biol Behav. 1987;12:239-44.

Liu T, Green AR, Rodríguez LF, Ramirez BC, Shike DW. Effects of number of animals monitored on representations of cattle group movement characteris¬tics and spatial occupancy. Plos One. 2015;10(2):113-7. doi: 10.1371/journal. pone.0113117.

Ganskopp D, Bohnert D. Do Pasture-Scale Nutritional Patterns Affect Cattle Dis¬tribution on Rangelands? Rangeland Ecology & Management 2006;59(2):189- 196.

Ganskopp D, Johnson D. GPS GPS Error in Studies Addressing Animal Move¬ments and Activities. Rangeland Ecology & Management Volume 2007;60(4): 350-358.[350:GEISAA]2.0.CO;2

Woodside GJ. Rocky Mountain elk (Cervus elaphus nelson) behavior and movement in relation to lunar phases. Corvallis, Oregon (US): Oregon State University; 2010.

Harris NR, Johnson DE, George MR, Mcdougald NK. The effect of topography, vegetation, and weather on cattle distribution at the San Joaquin experimental range, California. USDA Forest Service Gen Tech Rep. 2002;184:53–63.

IBM Corp. IBM SPSS Statistics for Windows. 21.0 ed. Armonk, NY: IBM Corp. 2012.

Frost AR, Schofield CP, Beaulah SA, Mottram TT, Lines JA, Wathes CM. A review of livestock monitoring and the need for integrated systems. Comput Electron Agric. 1997;17:139-59.

Gaillard JM, Hebblewhite M, Loison A, Fuller M, Powell R, Basille M, et al. Hab¬itat-performance relationships: finding the right metric at a given spatial scale. Phil Trans R Soc B 2010;365:2255–65. doi: 10.1098/rstb.2010.0085.

Schlecht E, Hiernaux P, Kadaoure I, Hulsebusch C, Mahler F. A spatio-temporal analysis of forage availability and grazing and excretion behaviour of herded and free grazing cattle, sheep and goats in Western Niger. Agric Ecosyst Environ. 2006:226-42. doi: 10.1016/j.agee.2005.09.008.

Mohr CO. Table of equivalent populations of North American small mam¬mals. American Midland Naturalist. 1947,37:223-249.

Barbari M. Planning individual showering systems for pregnant sows in dynamic group. Livestock Environment VII - Proceedings of the Seventh International Symposium; Beijing. 2005. p. 130–7.

Purroy A. Desarrollo integral del Ganado de lidia. In: . In: Buxadé C, editor. Producciones equinas y de ganado de lidia, Cap XVI Zootecnia, bases de pro¬ducción animal 1996.

de Miguel JM, Rodríguez MA, Gómez Sal A. Selección de habitat y distribución territorial de un grupo de vacas en ambiente de dehesa. In: Bellot J, editor. Jornadas sobre las bases ecológicas para la gestión en ecosistemas terrestres. Options Méditerranéennes : Série A. Séminaires Méditerranéens. 3. Zaragoza (ES): Zaragoza : CIHEAM; 1989. p. 299-303.

Bailey DW. Identification and creation of optimum habitat conditions for live¬stock. Rangeland Ecol Manag. 2005;58:109–18. doi: 10.2111/03-147.1.

Purroy A. Comportamiento del toro de lidia. Navarra (ES): Universidad Pública de Navarra; 2003.

Reppert JN. Forage preference and grazing habits of cattle at the Eastern Colo¬rado Range Station. J Range Manage. 1960;13:58-65.

Sneva FA. Behavior of yearling cattle on eastern Oregon range. J Range Manage. 1970;23:155-8.

Senft RL, Rittenhouse LR, Woodmansee RG. Factors influencing selection of rest¬ing sites by cattle on the shortgrass steppe. J Range Manage. 1985;38:295-9.

Wilson MA. Distribution and behavior of cattle grazing riparian pastures. Corval¬lis, Oregon (US): Oregon State University; 2011.

Dolev A, Henkin Z, Brosh A, Yehuda Y, Ungar ED, Shabtay A, et al. Foraging be¬havior of two cattle breeds, a whole-year study: II. Spatial distribution by breed and season. J Anim Sci. 2014;92:758–66. doi: 10.2527/jas.2013-6996.

Findlay JD. The effects of temperature, humidity, air movement and solar radia¬tion on the behaviour and physiology of cattle and other farm animals: a review of existing knowledge. Glasgow (UK): Hannah Dairy Research Institute; 1950.

Houpt KA. Domestic Animal Behaviour for veterinarians and Animal Scientist. 5th ed. Iowa (US): The Iowa University Press, Wiley-Blackwell; 2011.

Cory VL. Activities of livestock on the range. Tex. Agr. Exp. Sta. Bul. 1927;367:44-92.

Aparicio MA, Vargas J, Atkinson A. Las nuevas tecnologías y la montanera del cerdo ibérico. Mundo Ganadero. 2006;186:42-8.



  • There are currently no refbacks.