Quantitative evaluation of osteogenesis through infrared light. Pilot study.

Main Article Content

Pedro Alejandro Lomelí Mejía
Pablo Alfonso González Lomelín
Hugo Lecona Butrón
René Domínguez Rubio
Saúl Renan León Hernández
Itzel Xantal Luna Valdéz
Víctor Manuel Domínguez Hernández

Abstract

Veterinaria México OA
ISSN: 2448-6760

Cite this as:

  • Lomelí Mejía PA, González Lomelín PA, Lecona Butrón H, Domínguez Rubio R, León Hernández SR, Luna Valdéz IX, Domínguez Hernández V. Quantitative evaluation of osteogenesis through infrared light. Pilot study. Veterinaria México OA. 2017;4(2). doi: 10.21753/vmoa.4.2.410.

Different methods are available to evaluate the degree of bone healing. A good choice involves employing optical techniques with infrared light to eval-uate the progress of bone consolidation. Because infrared light is absorbed in liquids and reflected in solids, it is possible to assess bone consolidation progress using an incident light source and a coupled photo sensor. We used a 940-nm light source that is capable of reaching bone to determine the degree of bone consolidation. Five New Zealand White rabbits were used according to the NOM-062-ZOO99 standard. In each animal, a fracture was generated in the left tibia, and the fragments were fixed using an external fixator constructed with Kirschner nails and dental acrylic cement. Progress in bone consolidation was evaluated at days 7, 23, and 34 after surgery. A linear dependence was observed between the days elapsed and the reflection of the infrared light.

Figure 2. Reduction of tibia by external fixators made with Kirschner nails 0.045 inch in diameter and methylmethacrylate cement.
Keywords:
bone consolidation infrared light animal model laser diode

Article Details

Author Biographies

Pedro Alejandro Lomelí Mejía, Laboratorio de Biomecánica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra. Calz. México Xochimilco No. 289 Col. Arenal de Guadalupe, Delegación Tlalpan, C.P. 14389, Ciudad de México.

Laboratorio de Biomecánica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra. Calz. México Xochimilco No. 289 Col. Arenal de Guadalupe, Delegación Tlalpan, C.P. 14389, Ciudad de México

Pablo Alfonso González Lomelín, Cirugía de Mano, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra. Calz. México Xochimilco No. 289 Col. Arenal de Guadalupe, Delegación Tlalpan, C.P. 14389, Ciudad de México.

Cirugía de Mano, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra. Calz. México Xochimilco No. 289 Col. Arenal de Guadalupe, Delegación Tlalpan, C.P. 14389, Ciudad de México

Hugo Lecona Butrón, Bioterio y Cirugía Experimental. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra. Calz. México Xochimilco No. 289 Col. Arenal de Guadalupe, Delegación Tlalpan, C.P. 14389, Ciudad de México.

Bioterio y Cirugía Experimental. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra. Calz. México Xochimilco No. 289 Col. Arenal de Guadalupe, Delegación Tlalpan, C.P. 14389, Ciudad de México

René Domínguez Rubio, Maestría en Ciencias de la Salud, Escuela Superior de Medicina. Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Delegación Miguel Hidalgo, C.P. 11340,Ciudad de México.

Maestría en Ciencias de la Salud, Escuela Superior de Medicina. Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Delegación Miguel Hidalgo, C.P. 11340,Ciudad de México.

Saúl Renan León Hernández, Unidad de Apoyo a la Investigación. nstituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra. Calz. México Xochimilco No. 289 Col. Arenal de Guadalupe, Delegación Tlalpan, C.P. 14389, Ciudad de México.

Unidad de Apoyo a la Investigación. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra. Calz. México Xochimilco No. 289 Col. Arenal de Guadalupe, Delegación Tlalpan, C.P. 14389, Ciudad de México

Itzel Xantal Luna Valdéz, Bioterio y Cirugía Experimental. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra. Calz. México Xochimilco No. 289 Col. Arenal de Guadalupe, Delegación Tlalpan, C.P. 14389, Ciudad de México.

Bioterio y Cirugía Experimental. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra. Calz. México Xochimilco No. 289 Col. Arenal de Guadalupe, Delegación Tlalpan, C.P. 14389, Ciudad de México

Víctor Manuel Domínguez Hernández, Laboratorio de Biomecánica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra. Calz. México Xochimilco No. 289 Col. Arenal de Guadalupe, Delegación Tlalpan, C.P. 14389, Ciudad de México.

Laboratorio de Biomecánica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra. Calz. México Xochimilco No. 289 Col. Arenal de Guadalupe, Delegación Tlalpan, C.P. 14389, Ciudad de México

References

Simpson CR, Kohl M, Essenpreis M, Cope M. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Mon-te Carlo inversion technique. Phys Med Biol. 1998 Sep;43(9):2465-78. doi: 10.1088/0031-9155/43/9/003.

Jawad MM, Husein A, Azlina A, Alam MK, Hassan R, Shaari R. Effect of 940 nm low-level laser therapy on osteogenesis in vitro. J Biomed Opt. 2013;18(12):128001. doi: 10.1117/1.JBO.18.12.128001.

Li L, So-Ling C. Rendering human skin using a multilayer reflection model. Int J Math Comput Simulat. 2009;3(1):44-53.

Huxley AF. 1968. A theoretical treatment of the reflexion of light by multilayer structures. J Exp Biol. 1968:48(1):227-245.

Hébert M, Hersch RD, Becker JM. Compositional reflectance and transmittance model for multilayer specimens. J Opt Soc Am A Opt Image Sci Vis. 2007 Sep;24(9):2628-44. doi: 10.1364/josaa.24.002628.

Rohde SB. Modeling diffuse reflectance measurements of light scattered by layered tissues [Ph.D. Thesis]. [Merced, California (US)]: University of California, Merced; 2014.

Weissing FJ, Huisman J. Growth and competition in a light gradient. J Theor Biol. 1994; 168(3):323-36. doi: 10.1006/jtbi.1994.1113.

Bevilacqua F, Piguet D, Marquet P, Gross JD, Tromberg BJ, Depeursinge C. In vivo local determination of tissue optical properties: applications to human brain. Appl Opt. 1999;38(22):4939-50. doi: 10.1364/AO.38.004939.

Kulikov K. Laser interaction with biological material. Mathematical modelling. New York (US): Springer. 2014, pp. 47-65. doi: 10.1007/978-3-319-01739-6.

Sassaroli A, Fantini S. Comment on the modified Beer-Lambert law for scatter-ing media. Phys Med Biol. 2004;49(14):N255-7.

Wan S, Anderson RR, Parrish JA. Analytical modeling for the optical proper-ties of the skin with in vitro and in vivo applications. Photochem Photobiol. 1981;34(4):493-9. doi: doi.org/10.1111/j.1751-1097.1981.tb09391.x.

Simpson CR, Kohl M, Essenpreis M, Cope M. Near infrared optical properties of ex-vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Phys Med Biol. 1998;43:2465-78.

Laufer J, Simpson CR, Kohl M, Essenpreis, M, Cope M. Effect of temperature on the optical properties of ex-vivo human dermis and subdermis. Phys Med Biol 1998;43:2479-89.

Cook JE. Assessment of tibial fracture healing using dual energy X-ray absorpti-ometry. [Ms. C. Thesis]. [Durham (UK)]: Durham University. 1993.

Srinivasan R, Kumar D, Singh M. Optical tissue-equivalent phantoms for medical imaging. Trends Biomater. Artif. Organs. 2002;15(2):42-47.

Bjordal JM, Couppé C, Chow RT, Tunér J, Ljunggren EA. A systematic review of low level laser therapy with location-specific doses for pain from chron-ic joint disorders. Aust J Physiother. 2003;49(2):107-16. doi: 10.1016/s0004-9514(14)60127-6.

Krawiecki Z, Cysewska-Sobusiak A. Wiczynski G, Odon A. Modeling and mea-surements of light transmission through human tissues. Bull. Pol. Ac.: Tech. 2008;56(2):147-154.

Lomelí Mejía PA, Rodríguez León CE, Chaires Oria J, Domínguez Hernández VM, Lecona-Butron H, Araujo-Monsalvo VM, Cruz Orea A. Preliminary design of a device to optically evaluate bone consolidation. The Sci Tech, Int J Eng Sci. 2014;2:2-9.