The endometrium as a source of mesenchymal stem cells in domestic animals and possible applications in veterinary medicine

Main Article Content

Ana G. Serrato López
Juan J. Montesinos Montesinos
Santiago R. Anzaldúa Arce

Abstract

Veterinaria México OA
ISSN: 2448-6760

Cite this as:

  • Serrato López AG, Montesinos Montesinos JJ, Anzaldúa Arce SR. The endometrium as a source of mesenchymal stem cells in domestic animals and possible applications in veterinary medicine. Veterinaria México OA. 2017;4(3). doi: 10.21753/vmoa.4.3.441.

Mesenchymal stem cells (MSCs) have been isolated from the endometrium of humans, mice, cows, pigs and ewes. Typically, these cells are detected in the deep regions of the endometrium, closer to the union with the myometrium. MSCs possess characteristics such as clonogenicity and multipotentiality since they can differentiate in vitro into adipogenic, chondrogenic and osteogenic lineages. These cells can be induced to differentiate in vitro not only into the mesodermal lineage but also into the endodermal and ectodermal lineages. Therefore, MSCs show a great regenerative capacity for various organs and tissues, including the endometrium. Some advantages of endometrial MSCs compared with other MSC sources are their immune modulating activity, their ease of obtainment, and the amount of sample that may be collected. The study of endometrial MSCs in domestic animals is a new and promising field because increasing our understanding of the physiology and biology of these cells may lead to a better understanding of the physiopathology of reproductive diseases, and the development of treatment methods for infertility problems. In other veterinary medicine fields, MSCs can be used for the treatment of autoimmune diseases, cardiac affections, musculoskeletal and articular lesions, muscle degeneration, type 1 diabetes, urinary tract diseases, neurodegenerative processes and tumours. Finally, MSCs are also an important clinical tool for tissue engineering and regenerative medicine. The aim of this review is to present an updated outlook of the knowledge regarding endometrial MSCs and their possible applications in veterinary medicine.

Figure 1: Immunoregulatory ability of MSCs. MSCs regulate the functions of NK cells, dendritic cells (DC) and T lymphocytes. The immunosuppressive effect may occur through the secretion of different factors or through cellular contact (black arrows). The former pathway involves TGFß, HGF, IL-10, PGE2, and HLA-G5, whereas the latter pathway involves the products of IDO enzyme activity, PD-L1, HLA-G1, ICAM-I and VCAM-I. Pro-inflammatory cytokines (IFN-?) secreted by NK cells and activated T lymphocytes favour the immunoregulatory activity of MSCs (dotted lines), because they increase or induce the secretion of molecules that regulate the functions of the distinct cellular components of the immune system. Modified from Montesinos et al, and Ma et al.19,66
Keywords:
Uterus mesenchymal stem cells regenerative medicine immune modulation veterinary medicine.

Article Details

Author Biography

Ana G. Serrato López, Departamento de Morfología. Facultad de Medicina Veterinaria y Zootecnia. Universidad Nacional Autónoma de México. Avenida Universidad #3000, Delegación Coyoacán, D.F CP 04510, Mexico City, Mexico. Laboratorio de Células Troncales Mesenquimales, Unidad de Investigación Médica en Enfermedades Oncológicas, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México, México. C.P. 6720

Departamento de Morfología, Factal de Medicina Veterinaria y Zootecnia.

References

Gargett CE, Schwab KE, Zillwood RM, Nguyen HPT, Wu D. Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endome­trium. Biol Reprod. 2009;80:1136-45. doi: 10.1095/biolreprod.108.075226.

McLennan CE, Rydell AH. Extent of endometrial shedding during normal men­struation. Obstet Gynecol. 1965;26:605-21.

Slayden OD, Brenner RM. Hormonal regulation and localization of estrogen, pro­gestin and androgen receptors in the endometrium of nonhuman primates: ef­fects of progesterone receptor antagonists. Arch Histol Cytol. 2004;67:393-409.

Gargett CE. Uterine stem cells: What is the evidence? Hum Reprod Update. 2007;13:87-101. doi: 10.1093/humupd/dml045.

Prianishnikov VA. On the concept of stem cell and a model of functional-mor­phological structure of the endometrium. Contraception. 1978;18:213-23.

Hartman CG. Regeneration of the monkey uterus after surgical removal of the endometrium and accidental endometriosis. West J Surg. 1944;52:87-102.

Tresserra F, Grases P, Ubeda A, Pascual MA, Grases PJ, Labastida R. Morpho­logical changes in hysterectomies after endometrial ablation. Hum Reprod. 1999;14:1473-77.

Abbott JA, Garry R. The surgical management of menorrhagia. Hum Reprod Update. 2002;8:68-78.

Wood C, Rogers P. A pregnancy after planned partial endometrial resection. Aust N Z J Obstet Gynaecol. 1993;33:316-8. doi: 10.1111/j.1479-828X.1993. tb02097.x.

Bird CC, Willis RA. The production of smooth muscle by the endometrial stroma of the adult human uterus. J Pathol Bacteriol. 1965;90:75-81.

Mazur MT, Kraus FT. Histogenesis of morphologic variations in tumors of the uterine wall. Am J Surg Pathol. 1980;4:59-74.

Roth E, Taylor HB. Heterotopic cartilage in the uterus. Obstet Gynecol. 1966;27:838-44.

Chan RWS. Clonogenicity of Human Endometrial Epithelial and Stromal Cells. Biol Reprod. 2004;70:1738-50. doi: 10.1095/biolreprod.103.024109.

Gazit Z, Pelled G, Sheyn D, Kimelman N, Gazit D. Mesenchymal Stem Cells. In: Lanza R, Atala A, editors. Essentials of Stem Cell Biology. 3rd ed. San Diego, CA (US): Academic Press; 2013. p. 255-66.

Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143-7. doi: 10.1126/science.284.5411.143.

Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95.

Verdi J, Tan A, Shoae-Hassani A, Seifalian AM. Endometrial stem cells in regen­erative medicine. J Biol Eng. 2014;8:20.

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315-7. doi: 10.1080/14653240600855905.

Montesinos JJ, Castro-Manrreza E. Células troncales mesenquimales. In: Pelayo R, Santa-Olalla J, Velasco I, editors. Células troncales y medicina regenerativa. Ciudad de México (MX): Universidad Nacional Autónoma de México; 2011. p. 119-41.

Ulrich D, Muralitharan R, Gargett CE. Toward the use of endometrial and men­strual blood mesenchymal stem cells for cell-based therapies. Expert Opin Biol Ther. 2013;13:1387-400. doi: 10.1517/14712598.2013.826187.

Kobayashi A, Behringer RR. Developmental genetics of the female reproductive tract in mammals. Nat Rev Genet. 2003;4:969-80. doi: 10.1038/nrg1225.

Snyder EY, Loring JF. A role for stem cell biology in the physiological and patho­logical aspects of aging: Role for stem cell biology in aging. J Am Geriatr Soc. 2005;53:S287-S91. doi: 10.1111/j.1532-5415.2005.53491.x.

Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: entity or function? Cell. 2001;105:829–41.

Körbling M, Estrov Z. Adult stem cells for tissue repair—a new therapeutic con­cept? New England Journal of Medicine. 2003;349:570–82.

Taylor HS. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA. 2004;292:81–5.

Cervelló I, Gil-Sanchis C, Mas A, Faus A, Sanz J, Moscardó F, et al. Bone mar­row-derived cells from male donors do not contribute to the endometrial side population of the recipient. PLoS ONE. 2012;7:e30260. doi: 10.1371/journal. pone.0030260.

Gargett CE, Nguyen HPT, Ye L. Endometrial regeneration and endometrial stem/ progenitor cells. Rev Endocr Metab Disord. 2012;13:235-51. doi: 10.1007/ s11154-012-9221-9.

Shirian S, Ebrahimi-Barough S, Saberi H, Norouzi-Javidan A, Mousavi SMM, Der­akhshan MA, et al. Comparison of capability of human bone marrow mesenchy­mal stem cells and endometrial stem cells to differentiate into motor neurons on electrospun poly(ε-caprolactone) scaffold. Mol Neurobiol. 2016;53:5278- 87. doi: 10.1007/s12035-015-9442-5.

Dimitrov R, Timeva T, Kyurkchiev D, Stamenova M, Shterev A, Kostova P, et al. Characterization of clonogenic stromal cells isolated from human endometrium. Reproduction. 2008;135:551-8. doi: 10.1530/REP-07-0428.

Cho NH, Park YK, Kim YT, Yang H, Kim SK. Lifetime expression of stem cell mark­ers in the uterine endometrium. Fertil Steril. 2004;81:403-7. doi: 10.1016/j. fertnstert.2003.07.015.

Matthai C. Oct-4 expression in human endometrium. Mol Hum Reprod. 2006;12:7-10. doi: 10.1093/molehr/gah254.

Bodek G, Bukowska J, Wisniewska J, Ziecik AJ. Evidence for the presence of stem/progenitor cells in porcine endometrium: stem/progenitor cells in porcine endometrium. Mol Reprod Dev. 2015;82:182-90. doi: 10.1002/mrd.22459.

Lynch L, Golden-Mason L, Eogan M, O’Herlihy C, O’Farrelly C. Cells with hae­matopoietic stem cell phenotype in adult human endometrium: relevance to infertility? Hum Reprod. 2007;22:919-26. doi: 10.1093/humrep/del456.

Meng X, Ichim TE, Zhong J, Rogers A, Yin Z, Jackson J, et al. Endometrial re­generative cells: a novel stem cell population. J Transl Med. 2007;5:57. doi: 10.1186/1479-5876-5-57.

Schwab KE, Gargett CE. Co-expression of two perivascular cell markers iso­lates mesenchymal stem-like cells from human endometrium. Hum Reprod. 2007;22:2903-11. doi: 10.1093/humrep/dem265.

Masuda H, Anwar SS, Bühring H-J, Rao JR, Gargett CE. A Novel Marker of Human Endometrial Mesenchymal Stem-Like Cells. Cell Transplant. 2012;21:2201-14. doi: 10.3727/096368911X637362.

Ishikawa M, Nakayama K, Yeasmin S, Katagiri A, Iida K, Nakayama N, et al. NAC1, a potential stem cell pluripotency factor expression in normal endo­metrium, endometrial hyperplasia and endometrial carcinoma. Int J Oncol. 2010;36:1097-103.

Wang J, Rao S, Chu J, Shen X, Levasseur DN, Theunissen TW, et al. A pro­tein interaction network for pluripotency of embryonic stem cells. Nature. 2006;444:364-8. doi: 10.1038/nature05284.

Gargett CE, Zillwood RM, Schwab KE, Naqvi SZ. 236. Characterising the stem cell activity of human endometrial epithelial and stromal cells. Reprod Fertil Dev. 2005;17(9):93-. doi: 10.1071/SRB05Abs236.

Cervelló I, Gil-Sanchis C, Mas A, Delgado-Rosas F, Martínez-Conejero JA, Galán A, et al. Human endometrial side population cells exhibit genotypic, phenotypic and functional features of somatic stem cells. PLoS ONE. 2010;5:e10964. doi: 10.1371/journal.pone.0010964.

Bockeria L, Bogin V, Bockeria O, Le T, Alekyan B, Woods EJ, et al. Endometrial regenerative cells for treatment of heart failure: a new stem cell enters the clinic. J Transl Med. 2013;11(1):56. doi: 10.1186/1479-5876-11-56.

Cervelló I, Mas A, Gil-Sanchis C, Peris L, Faus A, Saunders PTK, et al. Reconstruc­tion of endometrium from human endometrial side population cell lines. PLoS ONE. 2011;6:e21221. doi: 10.1371/journal.pone.0021221.

Wada-Hiraike O, Hiraike H, Okinaga H, Imamov O, Barros RPA, Morani A, et al. Role of estrogen receptor β in uterine stroma and epithelium: Insights from estrogen receptor β−/− mice. PNAS. 2006;103(4):18350–5. doi: 10.1073/ pnas.0608861103.

Masuda H, Maruyama T, Hiratsu E, Yamane J, Iwanami A, Nagashima T, et al. Non­invasive and real-time assessment of reconstructed functional human endome­trium in NOD/SCID/γcnull immunodeficient mice. PNAS. 2007;104:1925–30.

Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and function­al properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996;183:1797-806.

Bunting KD, Zhou S, Lu T, Sorrentino BP. Enforced P-glycoprotein pump function in murine bone marrow cells results in expansion of side population stem cells in vitro and repopulating cells in vivo. Blood. 2000;96:902–9.

Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an effi­cient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood. 2002;99:507–12.

Smalley MJ, Clarke RB. The mammary gland “side population”: a putative stem/ progenitor cell marker? J Mammary Gland Biol Neoplasia. 2005;10:37-47. doi: 10.1007/s10911-005-2539-0.

Miyazaki K, Maruyama T, Masuda H, Yamasaki A, Uchida S, Oda H, et al. Stem cell-like differentiation potentials of endometrial side population cells as re­vealed by a newly developed in vivo endometrial stem cell assay. PLoS ONE. 2012;7:e50749. doi: 10.1371/journal.pone.0050749.

Chan RWS, Kaitu’u-Lino Tu, Gargett CE. Role of label-retaining cells in estro­gen-induced endometrial regeneration. Reprod Sci. 2012;19:102-14. doi: 10.1177/1933719111414207.

Chan RWS, Gargett CE. Identification of label-retaining cells in mouse endome­trium. Stem Cells. 2006;24:1529-38. doi: 10.1634/stemcells.2005-0411.

Martin L, Finn CA. Interactions of oestradiol and progestins in the mouse uterus. J Endocrinol. 1970;48:109–15.

Deane JA, Ong YR, Cain JE, Jayasekara WSN, Tiwari A, Carlone DL, et al. The mouse endometrium contains epithelial, endothelial and leucocyte populations expressing the stem cell marker telomerase reverse transcriptase. Mol Hum Reprod. 2016;22:272-84. doi: 10.1093/molehr/gav076.

Cervelló I, Martínez-Conejero JA, Horcajadas JA, Pellicer A, Simón C. Identifi­cation, characterization and co-localization of label-retaining cell population in mouse endometrium with typical undifferentiated markers. Hum Reprod. 2007;22:45-51. doi: 10.1093/humrep/del332.

Braun KM, Watt FM. Epidermal label-retaining cells: background and re­cent applications. J Investig Dermatol Symp Proc. 2004;9(3):196–201. doi: 10.1111/j.1087-0024.2004.09313.x.

Li Y, Rosen JM. Stem/progenitor cells in mouse mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia. 2005;10:17-24. doi: 10.1007/s10911-005-2537-2.

Szotek PP, Chang HL, Zhang L, Preffer F, Dombkowski D, Donahoe PK, et al. Adult mouse myometrial label-retaining cells divide in response to gonadotropin stim­ulation. Stem Cells. 2007;25:1317-25. doi: 10.1634/stemcells.2006-0204.

Donofrio G, Franceschi V, Capocefalo A, Cavirani S, Sheldon I. Bovine endo­metrial stromal cells display osteogenic properties. Reproductive Biology and Endocrinology. 2008;6:65. doi: 10.1186/1477-7827-6-65.

Cabezas J, Lara E, Pacha P, Rojas D, Veraguas D, Saravia F, et al. The endome­trium of cycling cows contains populations of putative mesenchymal progenitor cells. Reprod Domest Anim. 2014;49:550-9. doi: 10.1111/rda.12309.

Miernik K, Karasinski J. Porcine uterus contains a population of mesenchymal stem cells. Reproduction. 2012;143:203-9. doi: 10.1530/REP-11-0202.

Letouzey V, Tan KS, Deane JA, Ulrich D, Gurung S, Ong YR, et al. Isolation and characterisation of mesenchymal stem/stromal cells in the ovine endometrium. PLos ONE. 2015;10:e0127531. doi: 10.1371/journal.pone.0127531.

Arck P, Solano ME, Walecki M, Meinhardt A. The immune privilege of testis and gravid uterus: Same difference? Mol Cell Endocrinol. 2014;382:509-20. doi: 10.1016/j.mce.2013.09.022.

Popp FC, Renner P, Eggenhofer E, Slowik P, Geissler EK, Piso P, et al. Mesenchy­mal stem cells as immunomodulators after liver transplantation. Liver Transpl. 2009;15:1192-8. doi: 10.1002/lt.21862.

Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y. Immunobiology of mesenchymal stem cells. Cell Death Differ. 2014;21:216. doi: 10.1038/cdd.2013.158.

Prockop DJ, Youn Oh J. Mesenchymal stem/stromal cells (MSCs): role as guard­ians of inflammation. Mol Ther. 2012;20:14-20. doi: 10.1038/mt.2011.211.

Castro-Manrreza ME, Montesinos JJ. Immunoregulation by mesenchymal stem cells: Biological aspects and clinical applications. J Immunol Res. 2015;2015:1- 20. doi: 10.1155/2015/394917.

Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M. Inter­actions between human mesenchymal stem cells and natural killer cells. Stem Cells. 2006;24:74-85. doi: 10.1634/stemcells.2004-0359.

Bozorgmehr M, Moazzeni SM, Salehnia M, Sheikhian A, Nikoo S, Zarnani A-H. Menstrual blood-derived stromal stem cells inhibit optimal generation and maturation of human monocyte-derived dendritic cells. Immunol Lett. 2014;162:239-46. doi: 10.1016/j.imlet.2014.10.005.

Ghannam S, Bouffi C, Djouad F, Jorgensen C, Noël D. Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications. Stem Cell Res Ther. 2010;1:2. doi: 10.1186/scrt2.

Montesinos JJ, Mora-García MdL, Mayani H, Flores-Figueroa E, García-Rocha R, Fajardo-Orduña GR, et al. In vitro evidence of the presence of mesenchy­mal stromal cells in cervical cancer and their role in protecting cancer cells from cytotoxic T cell activity. Stem Cells Dev. 2013;22:2508-19. doi: 10.1089/ scd.2013.0084.

Fajardo-Orduña GR, Mayani H, Castro-Manrreza ME, Flores-Figueroa E, Flores-Guzmán P, Arriaga-Pizano L, et al. Bone marrow mesenchymal stro­mal cells from clinical scale culture: in vitro evaluation of their differentiation, hematopoietic support, and immunosuppressive capacities Stem Cells Dev. 2016;25(17):1299-310. doi: 10.1089/scd.2016.0071.

Ding L, Li Xa, Sun H, Su J, Lin N, Péault B, et al. Transplantation of bone mar­row mesenchymal stem cells on collagen scaffolds for the functional regener­ation of injured rat uterus. Biomaterials. 2014;35:4888-900. doi: 10.1016/j. biomaterials.2014.02.046.

Cervelló I, Santamaría X, Miyazaki K, Maruyama T, Simón C. Cell therapy and tis­sue engineering from and toward the uterus. Semin Reprod Med. 2015;33:366- 72. doi: 10.1055/s-0035-1559581.

Donnez J, Nisolle M. An Atlas of Laser Operative Laparoscopy and Hysteroscopy (Encyclopedia of Visual Medicine Series). Chicago, IL (US): Parthenon Pub; 1994.

Santamaria X, Cabanillas S, Cervelló I, Arbona C, Raga F, Ferro J, et al. Autologous cell therapy with CD133+ bone marrow-derived stem cells for refractory Ash­erman’s syndrome and endometrial atrophy: a pilot cohort study. Hum Reprod. 2016;31:1087-96. doi: 10.1093/humrep/dew042.

Alawadhi F, Du H, Cakmak H, Taylor HS. Bone marrow-derived stem cell (BMD­SC) transplantation improves fertility in a murine model of Asherman’s syn­drome. PLoS ONE. 2014;9. doi: 10.1371/journal.pone.0096662.

Gargett CE, Healy DL. Generating receptive endometrium in Asherman’s syn­drome. J Hum Reprod Sci. 2011;4(1):49-52.

Ettinger B, Bainton L, Upmails DH, Citron JT, VanGessel A. Comparison of endo­metrial growth produced by unopposed conjugated estrogens or by micronized estradiol in postmenopausal women. Am J Obstet Gynecol. 1997;176:112-7.

Paulson RJ, Boostanfar R, Saadat P, Mor E, Tourgeman DE, Slater CC, et al. Preg­nancy in the sixth decade of life: obstetric outcomes in women of advanced reproductive age. JAMA. 2002;288:2320-3. doi: 10.1001/jama.288.18.2320.

Aresu L, Benali S, Giannuzzi D, Mantovani R, Castagnaro M, Falomo ME. The role of inflammation and matrix metalloproteinases in equine endometriosis. J Vet Sci. 2012;13:171-7. doi: 10.4142/jvs.2012.13.2.171.

Hoffmann C, Ellenberger C, Mattos RC, Aupperle H, Dhein S, Stief B, et al. The equine endometrosis: new insights into the pathogenesis. Anim Reprod Sci. 2009;111:261-78. doi: 10.1016/j.anireprosci.2008.03.019.

Kenney RM. The etiology, diagnosis and classification of chronic degenerative endometritis. Equine Vet J. 1992;25:186.

Mambelli LI, Mattos RC, Winter GHZ, Madeiro DS, Morais BP, Malschitzky E, et al. Changes in expression pattern of selected endometrial proteins follow­ing mesenchymal stem cells infusion in mares with endometrosis. PLoS ONE. 2014;9:e97889. doi: 10.1371/journal.pone.0097889.

Seli E, Berkkanoglu M, Arici A. Pathogenesis of endometriosis. Obstet Gynecol Clin North Am. 2003;30:41-61.

Arora N, Sandford J, Browning GF, Sandy JR, Wright PJ. A model for cystic endometrial hyperplasia/pyometra complex in the bitch. Theriogenology. 2006;66:1530-6. doi: 10.1016/j.theriogenology.2006.02.019.

Cui C-H, Uyama T, Miyado K, Terai M, Kyo S, Kiyono T, et al. Menstrual blood-de­rived cells confer human dystrophin expression in the murine model of duchenne muscular dystrophy via cell fusion and myogenic transdifferentiation. Mol Biol Cell. 2007;18(5):1586-94. doi: 10.1091/mbc.E06-09-0872.

Hida N, Nishiyama N, Miyoshi S, Kira S, Segawa K, Uyama T, et al. Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells. Stem Cells. 2008;26(7):1695-704. doi: 10.1634/stemcells.2007-0826.

Santamaria X, Massasa EE, Feng Y, Wolff E, Taylor HS. Derivation of insulin producing cells from human endometrial stromal stem cells and use in the treatment of murine diabetes. Mol Ther. 2011;19:2065-71. doi: 10.1038/ mt.2011.173.

Shoae-Hassani A, Mortazavi-Tabatabaei SA, Sharif S, Seifalian AM, Azimi A, Sa­madikuchaksaraei A, et al. Differentiation of human endometrial stem cells into urothelial cells on a three-dimensional nanofibrous silk-collagen scaffold: an autologous cell resource for reconstruction of the urinary bladder wall: human endometrial stem cell differentiation into urothelial cells. J Tissue Eng Regen Med. 2015;9:1268-76. doi: 10.1002/term.1632.

Bayat N, Ebrahimi-Barough S, Ardakan MMM, Ai A, Kamyab A, Babaloo N, et al. Differentiation of human endometrial stem cells into Schwann cells in fi­brin hydrogel as 3D culture. Mol Neurobiol. 2016;53:7170-6. doi: 10.1007/ s12035-015-9574-7.

Wolff EF, Gao XB, Yao KV, Andrews ZB, Du H, Elsworth JD, et al. Endometrial stem cell transplantation restores dopamine production in a Parkinson’s disease model. J Cell Mol Med. 2011;15(4):747-55. doi: 10.1111/j.1582-4934.2010.01068.x.

Fayazi M, Salehnia M, Ziaei S. Differentiation of human CD146-positive en­dometrial stem cells to adipogenic-, osteogenic-, neural progenitor-, and gli­al-like cells. In Vitro Cell Dev Biol Anim. 2015;51:408-14. doi: 10.1007/ s11626-014-9842-2.

Patel AN, Park E, Kuzman M, Benetti F, Silva FJ, Allickson JG. Multipotent men­strual blood stromal stem cells: isolation, characterization, and differentiation. Cell Transplant. 2008;17:303–11.

Wolff EF, Mutlu L, Massasa EE, Elsworth JD, Redmond Jr DE, Taylor HS. Endo­metrial stem cell transplantation in MPTP- exposed primates: an alternative cell source for treatment of Parkinson’s disease. J Cell Mol Med. 2014;19:249-56. doi: 10.1111/jcmm.12433.

Han X, Meng X, Yin Z, Rogers A, Zhong J, Rillema P, et al. Inhibition of intracranial glioma growth by endometrial regenerative cells. Cell Cycle. 2009;8:606-10. doi: 10.4161/cc.8.4.7731.

Ludke A, Wu J, Nazari M, Hatta K, Shao Z, Li S-H, et al. Uterine-derived progen­itor cells are immunoprivileged and effectively improve cardiac regeneration when used for cell therapy. J Mol Cell Cardiol. 2015;84:116-28. doi: 10.1016/j. yjmcc.2015.04.019.

Huang ML, Tian H, Wu J, Matsubayashi K, Weisel RD, Li RK. Myometrial cells in­duce angiogenesis and salvage damaged myocardium. Am J Physiol Heart Circ Physiol. 2006;291:H2057-H66. doi: 10.1152/ajpheart.00494.2006.

Ito T, Meyer KC, Ito N, Paus R. Immune privilege and the skin. Curr Dir Autoim­mun. 2008;10:27-52. doi: 10.1159/000131412.

Lai D, Wang F, Yao X, Zhang Q, Wu X, Xiang C. Human endometrial mesenchy­mal stem cells restore ovarian function through improving the renewal of ger­mline stem cells in a mouse model of premature ovarian failure. J Transl Med. 2015;13:155. doi: 10.1186/s12967-015-0516-y.

Baiguera S, Jungebluth P, Mazzanti B, Macchiarini P. Mesenchymal stromal cells for tissue-engineered tissue and organ replacements: Tissue engineering and stem cells. Transpl Int. 2012;25:369-82. doi: 10.1111/j.1432-2277.2011.01426.x.

Gattegno-Ho D, Argyle S-A, Argyle DJ. Stem cells and veterinary medicine: tools to understand diseases and enable tissue regeneration and drug discovery. Vet J. 2012;191:19-27. doi: 10.1016/j.tvjl.2011.08.007.

Gonçalves N, Ambrósio C, Piedrahita J. Stem cells and regenerative medicine in domestic and companion animals: a multispecies perspective. Reprod Domest Anim. 2014;49:2-10. doi: 10.1111/rda.12392.