Addition of calcium propionate to finishing lamb diets

José A. Martínez-Aispuro, María Teresa Sánchez-Torres, German D. Mendoza-Martínez, José L. Cordero Mora, José L. Figueroa-Velasco, Marco A. Ayala-Monter, María M. Crosby-Galván

Abstract


Veterinaria México OA
ISSN: 2448-6760

Cite this as:

  • Martinez-Aispuro JA, Sánchez-Torres MT, Mendoza-Martinez GD, Cordero-Mora JL, Figueroa-Velasco JL, Ayala-Monter MA, Crosby-Galván MM. Addition of calcium propionate to finishing lamb diets. Veterinaria México OA. 2018;5(4). doi:10.22201/fmvz.24486760e.2018.4.470

Calcium (Ca) propionate can be added to ruminant diets as a glucogenic substrate. However, due to its hypophagic effect, it is necessary to establish the optimal dose that can be used to replace grains in finishing diets for lambs. Therefore, the objective of this study was to assess the effect of four concentrations of Ca propionate in lamb diets on productive performance and rumen fermentation. Thirty two Hampshire x Suffolk lambs (23.82 ± 0.40 kg initial body weight), distributed in a completely randomized design, were given a diet with four concentrations of Ca propionate (g kg−1): 0, 10, 20 or 30 g, for 42 days. The results were tested for linear or quadratic responses. The final weight, average daily gain and feed: gain ratio showed quadratic responses (P ≤ 0.01). The optimal dose was established at 13.77 g kg−1 DM. Addition of Ca propionate did not affect variables related to rumen fermentation (pH, total volatile fatty acids, acetate, butyrate or rumen ammonia-N; P ≥ 0.05) . Nonetheless, glucose and propionate concentrations showed a quadratic response (P ≤ 0.05). The highest concentrations of propionate in rumen were observed with 15.14 g kg−1 DM. Results indicate that Ca propionate can be included in a dose of up to 13.77 g kg−1 DM in feedlot rations, to attain best lamb performance.


Keywords


Volatile fatty acids; glucose; metabolizable energy; calcium propionate; lambs

Full Text:

PDF

References


Lee-Rangel HA, Mendoza GD, González SS. Effect of calcium propionate and sorghum level on lamb performance. Anim Feed Sci Technol. 2012;177:237-41.

Mendoza-Martínez GD, Pinos-Rodríguez JM, Lee-Rangel HA, Hernández-García PA, Rojo-Rubio R, Relling A. Effects of dietary calcium propionate on growth performance and carcass characteristics of finishing lambs. Anim Prod Sci. 2015;56:1194-8.

Van Houtert MFJ, Nolan JV, Leng RA. Protein, acetate and propionate for roughage-fed lambs. 2. Nutrient kinetics. Anim Sci. 1993;56:369-78.

Sano H, Fujita T. Effect of supplemental calcium propionate on insulin action to blood glucose metabolism in adult sheep. Reprod Nutr Dev. 2006;46:9-18.

Berthelot V, Bas P, Schmidely P, Duvaux-Ponter C. Effect of dietary propionate on intake patterns and fatty acid composition of adipose tissues in lambs. Small Rumin Res. 2001;40:29-39.

Oba M, Allen MS. Extent of hypophagia caused by propionate infusion is related to plasma glucose concentration in lactating dairy cows. J Nutr. 2003;133:1005-12.

Steel JW, Leng RA. Effects of plane of nutrition and pregnancy on gluconeogenesis in sheep. 2. Synthesis of glucose from ruminal propionate. Br J Nutr. 1973;30:475-89.

Liu Q, Wang C, Guo G, Yang WZ, Dong KH, Huang YX, et al. Effects of calcium propionate on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers. J Agric Sci. 2009;147:201-9.

Rigout S, Hurtaud C, Lemosquet S, Bach A, Rulquin H. Lactational effect of propionic acid and duodenal glucose in cows. J Dairy Sci. 2003;86:243-53.

De Blas C, Mateos GC, García- Rebollar P, Fundación Española para el Desarrollo de la Nutrición Animal (FEDNA). Tablas FEDNA de composición y valor nutritivo de alimentos para la fabricación de piensos compuestos. 3a ed. Madrid: Fundación Española para el Desarrollo de la Nutrición Animal; 2010.

Council for International Organizations of Medical Sciences. International Guiding Principles for Biomedical Research Involving Animals; 2012 [cited 2017 Jan 23]. Available from: http://www.cioms

Secretaría de Gobernación. [NOM-062-ZOO] Norma Oficial Mexicana. Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. Ciudad de México: Diario Oficial de la Federación; 1999.

García E. Modificaciones al sistema de clasificación de Köppen. 4a ed. Ciudad de México: Instituto de Geografía, UNAM; 1988.

National Research Council (NRC). Nutrient requirements of small ruminants. 7th ed. Washington, DC: National Academy Press; 2007.

Silva SR, Gomes MJ, Días-da-Silva A, Gil LF, Azevedo JM. Estimation in vivo of the body and carcass chemical composition of growing lambs by real-time ultrasonography. J Anim Sci. 2005; 83:350-357.

Association of Official Analytical Chemists International. Official methods of analysis. 18th ed. Washington DC: Association of Official Analytical Chemists International; 2005.

Karl RF, McDowell LR, Miles PH, Wilkinson NS, Funk JD, Conrad JH. Methods of Mineral Analysis of Plant and Animal Tissues. 2nd ed. Gainesville, FL: University of Florida; 1979.

Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fibre, neutral detergent fibre, and nonstarch carboydrates in relation to animal nutrition. J Dairy Sci. 1991;74:3583-3597.

Trinder P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem. 1969;6:24-7.

McCullough H. The determination of ammonia in whole blood by direct colorimetric method. Clin Chim Acta. 1967;17:297-304.

Erwin ES, Marco GJ, Emery E. Volatile fatty acid analysis of blood and rumen fluid by gas chromatography. J Dairy Sci. 1961;44:1768-71.

SAS Institute. The SAS System, release 8.2 for Windows. Cary, North Carolina: SAS Institute; 2009.

Herrera HJG, Barreras AS. Análisis estadístico de experimentos pecuarios: Manual de Procedimientos (Aplicaciones del programa SAS). 2ª ed. Texcoco, Estado de México: Colegio de Posgraduados; 2005.

Majdoub L, Vermorel M, Ortigues-Marty I. Grass based diet and barley supplementation: partition of energy-yielding nutrients among splanchnic tissues and hindlimb in finishing lambs. J Anim Sci. 2003;81:1068-79.

Bradford BJ, Allen MS. Phlorizin administration does not attenuate hypophagia induced by intraruminal propionate infusion in lactating dairy cattle. J Nutr. 2007;137:326-30.

Liu Q, Wang C, Yang WZ, Guo G, Yang XM, He DC, et al. Effects of calcium propionate supplementation on lactation performance, energy balance and blood metabolites in early lactation dairy cows. J Anim Physiol Anim Nutr. 2010;94:605-14.

Whitney MB, Hess BW, Burgwald-Balstad LA, Sayer JL, Tsopito CM, Talbott CT, et al. Effects of supplemental soybean oil level on in vitro digestion and performance of prepubertal beef heifers. J Anim Sci. 2000;78:504-14.

Osorio I, Mendoza GD, Plata FX, Martínez JA, Vargas L, Ortega GC. A simulation model to predict body weight gain in lambs fed high-grain diets. Small Rumin Res. 2015;123:246–50.

Quigley JD, Heitmann RH. Effects of propionate infusion and dietary energy on dry matter intake in sheep. J Anim Sci. 1991;69:1178-87.

Sanchez PH, Tracey LN, Browne-Silva J, Lodge-Ivey SL. Propionibacterium acidipropionici P169 and glucogenic precursors improve rumen fermentation of low-quality forage in beef cattle. J Anim Sci. 2014;92:1738-46.

Seal CJ, Parker DS. Effect of intraruminal propionic acid infusion on metabolism of mesenteric and portal-drained viscera in growing steers fed a forage diet: I. Volatile fatty acids glucose and lactate. J Anim Sci. 1994;72:1325-34.




DOI: http://dx.doi.org/10.22201/fmvz.24486760e.2018.4.470

Refbacks

  • There are currently no refbacks.