Effect of phytase dose on productive performance and bone status of layers fed with graded levels of digestible lysine

Main Article Content

Ingrid Yolani Martinez Rojas
Carlos López Coello
Ernesto Ávila González
J. Arce Menocal
G. A. Gomes

Abstract

Veterinaria México OA
ISSN: 2448-6760

Cite this as:

  • Martínez Rojas IY, López Coello C, Ávila González E, Arce Menocal J, Gomes GA. ffect of phytase dose on productive performance and bone status of layers fed with graded levels of digestible lysine. Veterinaria México OA. 2018;5(3) doi:10.22201/fmvz.24486760e.2018.3.564.

Exogenous phytase could influence dietary protein availability by variation in using dose. The objective of the present study was to determine if incremental dosing of an evolved E.coli 6-phytase would lead to improvements in lysine availability through evaluating performance and bone status in Bovans White layers. A total of 182 layers were placed in individual cages and distributed to 13 treatments: a 3×4 factorial arrangement with three levels of digestible lysine (dLys - 0.67, 0.77, and 0.87 %) and four doses of phytase (0, 300, 1 200, and 4 800 FTU/kg) in 0.12 % available P (avP) diets. Additionally, one phytase-free control treatment was included with 0.25 % avP and 0.87 % dLys. Productive parameters were recorded for 25 weeks, from 39 week-old. At the end, abdominal fat deposition and the tibia were sampled; in bone was determined breaking strength and bone ash. Layers fed 1 200 FTU/kg phytase increased egg production percentage (F3,169 = 2.01, p = 0.019), abdominal fat deposition (F3,169 = 2.52, p = 0.059), bone breaking strength (F3,169 = 4.29, p = 0.006) and bone ash weight (F3,169 = 3.62, p = 0.015) compared with non-phytase inclusion. Furthermore, 1 200 FTU/kg phytase decreased incidence of broken eggs and soft-shell eggs (F3,169 = 2.9, p = 0.037). Phytase and dLys levels influenced egg mass and bone ash concentration (F12,169 = 1.86, p = 0.043). FCR and body weight loss was reduced with phytase inclusion (respectively: F12,169 = 2.43, p = 0.045, and F12,169 = 2.24, p = 0.001). Phytase-free control diet increased egg weight (F12,169 = 3.70, p < 0.068), but gave greater BW loss (F12,169 = 17.79, p < 0.001), less abdominal fat content (F12,169 = 5.85, p < 0.017), and no effect on other variables (p > 0.07). In conclusion, 1 200 FTU/kg of phytase improved productive performance and preserved body weight and bone status, without equivalence of phytase inclusion for dLys level, even with higher doses.

Figure A. Response of egg marketable mass
Keywords:
bone parameters digestible lysine laying hens phytase dose productive performance

Article Details

References

Selle P, Ravindran V. Microbial phytase in poultry nutrition. Anim Feed Sc Tech. 2007;135:1-41. doi: 10.1016/j.anifeedsci.2006.06.010.

Doria E, Galleschi L, Calucci L, Pinzino C, Pilu R, Cassani E, et al. Phytic acid prevents oxidative stress in seeds: evidence from a maize (Zea mays L.) low phytic acid mutant. Journal of Experimental Botany. 2009;60(3):967-78. doi: 10.1093/jxb/ern345.

Angel R, Tamim NM, Applegate TJ, Dhandu AS, Ellestad LE. Phytic acid chemistry: influence on phytin-phosphorus availability and phytase efficacy1. J App Poult Res. 2002;11(4):471-80. doi: 10.1093/japr/11.4.471.

Rutherfurd SM, Edwards AC, Selle PH. Effect of phytase on lysine-rice pollard complexes. Manipulating pig production VI. Aus Pig Sci Assoc. 1997:248.

Truong HH, Yu S, Peron A, Cadogan DJ, Khoddami A, Roberts TH, et al. Phytase supplementation of maize-, sorghum- and wheat-based broiler diets with identified starch pasting properties influences phytate (IP6) and sodium jejunal and ileal digestibility. Animal Feed Science and Technology. 2014;198:248-56. doi: https://doi.org/10.1016/j.anifeedsci.2014.10.007.

Nahm KH. Efficient phosphorus utilization in poultry feeding to lessen the environmental impact of excreta. World's Poultry Science Journal. 2007;63(4):625-54. doi: 10.1017/S0043933907001663.

Cowieson AJ, Wilcock P, Bedford MR. Super-dosing effects of phytase in poultry and other monogastrics. World's Poultry Science Journal. 2011;67(2):225-36. doi: 10.1017/S0043933911000250.

Dersjant-Li Y, Awati A, Schulze H, Partridge G. Phytase in non-ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract and influencing factors. Journal of the Science of Food and Agriculture. 2015;95(5):878-96. doi: 10.1002/jsfa.6998.

Cheryan M, Rackis JJ. Phytic acid interactions in food systems. C R C Critical Reviews in Food Science and Nutrition. 1980;13(4):297-335. doi: 10.1080/10408398009527293.

Selle PH, Cowieson AJ, Cowieson NP, Ravindran V. Protein-phytate interactions in pig and poultry nutrition: a reappraisal. NutritionResearch Reviews. 2012;25(1):1-17. doi: 10.1017/s0954422411000151.

Bye JW, Cowieson NP, Cowieson AJ, Selle PH, Falconer RJ. Dual effects of sodium phytate on the structural stability and solubility of proteins. Journal of Agricultural and Food Chemistry. 2013;61(2):290-5. doi: 10.1021/jf303926v.

Boisen S, Hvelplund T, Weisbjerg MR. Ideal amino acid profiles as a basis for feed protein evaluation. Livestock Production Science. 2000;64(2):239-51. doi: 10.1016/S0301-6226(99)00146-3.

Coon CN. Feeding commercial egg-type layers. In: Bell DD, Weaver WD, editors. Commercial chicken meat and egg production. Boston (MA): Springer US, 2002. p. 287-328.

Silva EP, Malheiros EB, Sakomura NK, Venturini KS, Hauschild L, Dorigam JCP, et al. Lysine requirements of laying hens. Livestock Science. 2015;173:69-77. doi: 10.1016/j.livsci.2015.01.005.

Bedford M, Walk C. Reduction of phytate to tetrakisphosphate (IP4) to triphosphate (IP3), or perhaps even lower, does not remove its antinutritive properties. In: Walk C, Kuhn I, Kidd S, editors. Phytate destruction consequences for precision animal nutrition. The Netherlands (NL): Wageningen Academic, 2016. p. 45-51.

Zeller E, Schollenberger M, Kuhn I, Rodehutscord M. Dietary effects on inositol phosphate breakdown in the crop of broilers. Archives of animal nutrition. 2016;70(1):57-71. doi: 10.1080/1745039x.2015.1112622.

Wilcock P, Walk CL. Low phytate nutriion - what is the pig and poultry industry doing to counter dietary phytate as an anti-nutrient and how is it being applied? In: Walk CL, Kuhn I, Stein HH, Kidd MT, Rodehutscord M, editors. Phytate destruction consequencres for precision animal nutrition. The Netherlands (NL): Wageningen Academic, 2016. p. 86-106.

Selle PH, Ravindran V, Cowieson AJ, Bedford MR. Phytate and phytase. In: Bedford MR, Partridge GG, editors. Enzymes in farm animal nutrition. 2nd ed. Wallingford (UK): Centre for Agriculture and Biosciences International, 2010. p. 160-205.

Francesch M, Broz J, Brufau J. Effects of an experimental phytase on performance, egg quality, tibia ash content and phosphorus bioavailability in laying hens fed on maize- or barley-based diets. British Poultry Science. 2005;46(3):340-8. doi: 10.1080/00071660500127001.

Keshavarz K. The effect of different levels of nonphytate phosphorus with and without phytase on the performance of four strains of laying hens. Poultry Science. 2003;82(1):71-91. doi: 10.1093/ps/82.1.71.

Lim HS, Namkung H, Paik IK. Effects of phytase supplementation on the performance, egg quality, and phosphorous excretion of laying hens fed different levels of dietary calcium and nonphytate phosphorous. Poultry Science. 2003;82(1):92-9. doi: 10.1093/ps/82.1.92.

Mellef J, Dridi A, Agrebi A, Belhaj O. Effets de l'ajout de phytase dans la ration alimentaire sur les performances de ponte des poules pondeuses. R Med Vet. 2011;162(6):304.

Agbede JO, Adebayo IA, Osho IB, Bankole OM. Influence of microbial phytase on amino acid digestibility of caecectomised laying hens fed marginally low methionine-based diet. Adv Anim Biosci. 2010;1(2):453-4. doi: 10.1017/S2040470010000750.

Selle PH, Ravindran V, Ravindran G, Bryden WL. Effects of dietary lysine and microbial phytase on growth performance and nutrient utilisation of broiler chickens. J Anim Sci. 2007;20(7):1100-7. doi: 10.5713/ajas.2007.1100.

National Research Council. Nutrient requirements of poultry. 9th ed. Washington, DC: The National Academies Press, 1994. p. 176.

Horwitz W, Latimer GW, Association of Official Analytical Chemists I. Official methods of analysis of AOAC international. Gaithersburg, Maryland: AOAC International, 2006.

Weaver JD, Ullah AHJ, Sethumadhavan K, Mullaney EJ, Lei XG. Impact of assay conditions on activity estimate and kinetics comparison of Aspergillus niger phyA and Escherichia coli appA2 phytases. Journal of Agricultural and Food Chemistry. 2009;57(12):5315-20. doi: 10.1021/jf900261n.

Silva JHVd, Araujo JAd, Goulart CdC, Costa FGP, Sakomura NK, Furtado DA. Influência da interação fósforo disponível × fitase da dieta sobre o desempenho, os níveis plasmáticos de fósforo e os parâmetros ósseos de poedeiras comerciais. R Bras Zootec. 2008;37:2157-65. doi: 10.1590/S1516-35982008001200012.

Novak C, Yakout H, Scheideler S. The combined effects of dietary lysine and total sulfur amino acid level on egg production parameters and egg components in Dekalb Delta laying hens 1. Poultry Science. 2004;83(6):977-84. doi: 10.1093/ps/83.6.977.

Onyango EM, Bedford MR, Adeola O. Phytase activity along the digestive tract of the broiler chick: a comparative study of an Escherichia coli-derived and Peniophora lycii phytase. Canadian Journal of Animal Science. 2005;85(1):61-8. doi: 10.4141/A04-067.

Silversides FG, Scott TA, Korver DR, Afsharmanesh M, Hruby M. A Study on the interaction of xylanase and phytase enzymes in wheat-based diets fed to commercial white and brown egg laying hens 1. Poultry Science. 2006;85(2):297-305. doi: 10.1093/ps/85.2.297.

Ceylan N, Scheideler SE, Stilborn HL. High available phosphorus corn and phytase in layer diets. Poultry Science. 2003;82(5):789-95. doi: 10.1093/ps/82.5.789.

Englmaierová M, Dlouhá G, Marounek M, Skřivan M. Efficacy of contrast levels of non-phytate phosphorus and Aspergillus niger phytase in hens fed wheat-maize-based diets. Czech Journal of Animal Scienc. 2012; 11:499-505. doi: 10.17221/6382-CJAS.

Augspurger NR, Webel DM, Baker DH. An Escherichia coli phytase expressed in yeast effectively replaces inorganic phosphorus for finishing pigs and laying hens. Asian Journal of Animal Science. 2007;85(5):1192-8. doi: 10.2527/jas.2006-340.

Viana MTdS, Albino LFT, Rostagno HS, Barreto SLdT, Silva EAd, Florentino WM. Efeito da suplementação de enzima fitase sobre o metabolismo de nutrientes e o desempenho de poedeiras. Revista Brasileira de Zootecnia. 2009;38:1074-80. doi: 10.1590/S1516-35982009000600015.

Scanes CG, Campbell R, Griminger P. Control of energy balance during egg production in the laying hen. The Journal of Nutrition. 1987;117(3):605-11. doi: 10.1093/jn/117.3.605.

Barkley GR, Miller HM, Forbes JM. The ability of laying hens to regulate phosphorus intake when offered two feeds containing different levels of phosphorus. British Journal of Nutrition. 2004;92(2):233-40. doi: 10.1079/BJN20041182.

Torii K, Yokawa T, Tabuchi E, Hawkins RL, Mori M, Kondoh T, et al. Recognition of deficient nutrient intake in the brain of rat with L-lysine deficiency monitored by functional magnetic resonance imaging, electrophysiologically and behaviorally. Amino Acids. 1996;10(1):73-81. doi: 10.1007/bf00806094.

Hendrix Genetics Company. Bovans nutrition management guide. The Netherlands-EU. 2009. https: //www.bovans.com/en/product/bovans-white/.

Rostagno H, Albino L, Donzele J, Gomes P, Oliveira R, Lopes D, et al. Tabelas brasileiras para aves e suínos. Composição de alimentos e exigências nutricionais. Viçosa, MG (BR): Universidade Federal de Viçosa, 2017.

Shirley RB, Edwards JHM. Graded levels of phytase past industry standards improves broiler performance. Poultry Science. 2003;82(4):671-80. doi: 10.1093/ps/82.4.671.

Van der Klis JD, Versteegh HA, Simons PC, Kies AK. The efficacy of phytase in corn-soybean meal-based diets for laying hens. Poultry Science. 1997;76(11):1535-42. doi: 10.1093/ps/76.11.1535.

Zeller E, Schollenberger M, Witzig M, Shastak Y, Kühn I, Hoelzle LE, et al. Interactions between supplemented mineral phosphorus and phytase on phytate hydrolysis and inositol phosphates in the small intestine of broilers1, 2. Poultry Science. 2015;94(5):1018-29. doi: 10.3382/ps/pev087.

Prattley CA, Stanley DW, Voort FR. Protein-phytate interactions in soybeans. II mechanism of protein-phytate binding as affected by calcium. J Food Biochem. 1982;6(4):255-72. doi: doi:10.1111/j.1745-4514.1982.tb00306.x.

Thompson LU, Yoon JH. Starch digestibility as affected by polyphenols and phytic acid. J Food Sci. 1984;49(4):1228-9. doi: 10.1111/j.1365-2621.1984.tb10443.x.

Scott TA, Kampen R, Silversides FG. The effect of phosphorus, phytase enzyme, and calcium on the performance of layers fed wheat-based diets. Canadian Journal of Animal Science. 2000;80(1):183-90. doi: 10.4141/A99-082.

Yildiz AO, Olgun O, Cufadar Y. The effect of manganese and phytase in the diet for laying hens on performance traits and eggshell quality. J Anim Vet Adv. 2010;9:32-6. doi: 10.3923/javaa.2010.32.36.

Keshavarz K. A comparison between cholecalciferol and 25-OH-cholecalciferol on performance and eggshell quality of hens fed different levels of calcium and phosphorus. Poultry Science. 2003;82(9):1415-22. doi: 10.1093/ps/82.9.1415.

Burton LE, Wells WW. Myo-inositol deficiency: studies on the mechanism of lactation-dependent fatty liver formation in the rat. The Journal of Nutrition. 1979;109(8):1483-91. doi: 10.1093/jn/109.8.1483.

Cosgrove DJ. The chemistry and biochemistry of inositol polyphosphates. Rev Pure Appli Chem. 1966;16:209-24.

Hassanien HHM, Sanaa HME. Comparison difference levels of phytase enzyme supplementation on laying hen performance, egg quality and some blood parameters. Asian Journal of Poultry Science. 2011;5:77-85. doi: 10.3923/ajpsaj.2011.77.85.

Hincke MT, Nys Y, Gautron J, Mann K, Rodriguez-Navarro AB, McKee MD. The eggshell: structure, composition and mineralization. Frontiers in bioscience (Landmark edition). 2012;17:1266-80.

Solomon SE. The eggshell: strength, structure and function. British Poultry Science. 2010;51(sup1):52-9. doi: 10.1080/00071668.2010.497296.

Hernández-Hernández A, Vidal ML, Gómez-Morales J, Rodríguez-Navarro AB, Labas V, Gautron J, et al. Influence of eggshell matrix proteins on the precipitation of calcium carbonate (CaCO3). Journal of Crystal Growth. 2008;310(7):1754-9. doi: https://doi.org/10.1016/j.jcrysgro.2007.11.170.

Kim WK, Donalson LM, Herrera P, Woodward CL, Kubena LF, Nisbet DJ, et al. Research note: Effects of different bone preparation methods (fresh, dry, and fat-free dry) on bone parameters and the correlations between bone breaking strength and the other bone parameters. Poultry Science. 2004;83(10):1663-6. doi: 10.1093/ps/83.10.1663.

Adeola O, Walk CL. Linking ileal digestible phosphorus and bone mineralization in broiler chickens fed diets supplemented with phytase and highly soluble calcium. Poultry Science. 2013;92(8):2109-17. doi: 10.3382/ps.2013-03068.

Ravindran V, Selle PH, Ravindran G, Morel PCH, Kies AK, Bryden WL. Microbial phytase improves performance, apparent metabolizable energy, and ileal amino acid digestibility of broilers fed a lysine-deficient diet. Poultry Science. 2001;80(3):338-44. doi: 10.1093/ps/80.3.338.

Li W, Angel R, Kim SW, Jiménez-Moreno E, Proszkowiec-Weglarz M, Plumstead PW. Age and adaptation to Ca and P deficiencies: 2. Impacts on amino acid digestibility and phytase efficacy in broilers. Poultry Science. 2015;94(12):2917-31. doi: 10.3382/ps/pev273.

Meyer E, Parsons C. The efficacy of a phytase enzyme fed to Hy-Line W-36 laying hens from 32 to 62 weeks of age. The Journal of Applied Poultry Research. 2011;20(2):136-42. doi: 10.3382/japr.2010-00212.